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SUMMARY

The last major international-meeting on "Transonic Aerodynamics" was
the "§ymposium Transsonicum" held in Aachen, in 1962. Since that time
there have been considerable developments in thisfield for both

wmilitary a vilian applications, inca number of NATO countries and
it was felt that sufficient information, had been accumulated to Justify
a Specialists' Meeting on this topic. It was- planned to hold this
meeting on 18-20 September in Paris at the Ecole Nationale Supdrieure de-
l'Adronautique.

Members of the Program Committee were:

j M.R.Legendre, France (Chairman), Prof.S.Erdmann, Netherlands,
Dr.D.KUchemann, U.K., Dr. J. Lukasiewicz, U, S. A., Prof. A. Naumann,
Germany, and Prof. B.H. Goethert, U.S.A. (Co-opted member).

-These proceedings contain a collection of the paper§ presented at
this meeting, the purpose of which was to review-and discuss the practical
methods available for the study of flows around airplanes flying at
subsonic speeds at which local supersonic regions appear.

The collection of papers emphasizes various calculation methods,
experimental studies on profiles, with or without viscosity effects,
and wing-body interference, to present a good,cross-section of the
state-of-the-art andsto provide guidance for further research and
development in this field.,

Contributions have come from five NATO countries.

533.6.011.3
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RESUME

Depuis 1962, oil s' dtait tenu & Aix-la-Chapelle le "Symposium
Transsonicum", aucune rdunion internationale importante ni'avait e4td
consacrde i 1' Adrodynamique Transsonique. Pourtant, depuis cette
date, des rdalisations considdrables, int4ressant & la fois lea activit4s
civiles et militaires, avalent dtd accomplies dans ce domaine par un
certain nombre de pays de 1'OTAN et 1Von est ima que la somme d' infornations
accumuldes & ce sujet justifiait 1'organisation d'une Rdunion de
Spdcia2listes. C' est ainsi que prit naissance 1' idde de la rdunion qui
s' est ddroulde A Paris, & L'Ecole Nationale Sup~rieure de 1' Aeronautique
du 18 an 20 Septembre 1968.

Le Comitd dui Programme chargd de sa rdalisation se composait des
membres suivants.:

M. R.Legendre, France (Prdsident), Prof. S. Erdmann, Pays-Bas,
Dr.D.KUchemann, Grande-Bretagne; Dr.J.Lukasiewicz, U.S.A.,
Prof.A.Naumann, Allemagne et le Prof.B.H.Goethert, U.S.A. (admis
par cooptation).

Ce compte-rendu rassemble les exposds prdsent4s & cette rdunion,
dont 1' objectif 4tait de passer en revue et d' examiner les mdthodes
pratiques dont on dispose & 1'heure actuelle pour dtudier les dcoulements
autour d'avions volant aux vitesses subsoniques oh apparaissent des
rdgions supersoniques locales.

Ces exposds, fruit dui travail de cinq pays de 1' OTAN, sont consacrds
en particulier aux diverses mdthodes de calcul, aux dtudes expdrimentales
sur les profils, avec ou sans effets de viscositd, et aux interfd'rences
voihure-fuselage. Ils donnent un bon aperqu de 1' 4tat actuel de la
techntologie dans ce doinaine et contiennent des donndes permettant
d'orienter lea recherches et d~veloppements futurs.

CinQ pays de 1' OTAN ont donnd leur contribution.

iv
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Transonic shock-tree flow. faot or fiotion ?

by G.Y. Nieuwland anid B.M. Spee

National Aerospace lAboratory NLR, Amsterdia, Netherlnids



[ Summary

It has to be realized that such terms as physical significance and stability, used in
the transonic controversy, have different connotations from the engineering, mathematical
and physical point of view.

The conclusions that have been obtained from an experimental study on quasi-elliptical
aerofoil sections may be said to oonstitute the rslevance of transonic potential flow in the
engineering sense. These conclusions are i
- the agreement between experiment and theory can in principle be made arbitrarily good by

eliminating model imperfections and boundary 'ayer effects!
- the shook-free design condition is 3mbedde in, and can be reached in a stable manner

from, the neighbouring conditions where shook wLves are present.
The only legitimate way to discuss the physical significance of potential flow

solutions from the mathematical point of view is to exhibit suoh solutions as the limit of
solutions of the unsteady compressible Navier-Stokes equations for Re--0o , t- .
Morawetz's non-existence theorems for transonic potential flow have therefore very limite
physical content, they are rather concerned with the computability of such flows.

From a physical point of view, arguments for the instability of transonic potential
flown against time dependent disturbances have been advanced by Kuo and others. These
arguments disregard a stabilizing effect on acoustic wave propagation in the flow,
essentially dependent on its two-dimensional nature. This stability mechanism for unsteady
disturbances in a shook-free transonic flow is demonstrated.

It can be claimed, in spite of earlier criticism, that the use of potential flow
theory in the transonic region is, both mathematically and physically, as respectable, as
it is anywhere else in aerodynamics.



Notation

o - propagation speed of small disturbance

o - stagnation value of o0

J - determinant of rate of strain tensor V

M - Mach number q/c

n - ourvilinear coordinate normal to streamline

q - flow velocity

- flow velocity vector

r - unit vector normal to wave front

a - curvilinear coordinate along streamline

T - unit vector tangential to wave front

CK - wave front inclination with respect to velocity vector

- specific heats ratio

0 - flow angle

CO - wave front local rate of turning
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Transonic shock-free flow, fact or fiction ?

N Xby G.Y. Nieuwland x; and B.M. Spee

National Aerospace Laboratory NLR, Amsterdam,
Netherlands.

1 Historical introduction.

In his preface to the Symposium Transsonicum (Aachen 1962, ref.1), Oswatitsch
explains that " ... Those concerned with the transonic controversy are split in two camps
with different points of view. Rigorous proofs which could settle the controversy have not
yet been found".

There is not much point in attempting a documented reconstruction of the two positions
involved, but it is probably fair to state the most widely held one as follows g

1) The basic assertion was, that experimentally only transonic flows involving shock waves
were found, at least when a well developed supersonic region was present, say for
, max> 1.1.

2) Tn 8 retically, examples of transonic potential flows can be constructed, exhibiting
shock free recompression from the supersonic flow region back to subsonic flow speed.
However, if 1) was true, one had to suppose that these solutions were unstable in some
sense.

3) For this instability, two complementary explanations were given. The first explanation
was sought in the mathematical fact, that a transonic potential flow solution, if it
exists for some particular aerofoil shape, can be blown up by an arbitrarily small
perturbation of the part of the contour bounding the supersonic region (Busemann, ref.2;
Morawetz, ref.3). Secondly, the argument was advanced that the development in time of a
perturbed transonic potential flow around a fixed profile would be unstable, as
upstream running perturbations would increase exponentially with time in the supersonic
recompression region of the flow (Kuo, ref.4; Werner, ref.5). Both these arguments
conveyed the suggestion of the collapse of a potential flow solution into the
supposedly standard stable, transonic flow solution with a shock.

Against this often rather agressively held position, the defenses put up by the other
camp were, one feels, rather weak; as it now turns out, perhaps unnecessarily so. While the
opponents gradually left their trenches to partake in more fashionable activities than the
at that time rather out-moded tr-nsonic aerodynamics, the whole picture was changed by
Pearcey and his group at the NFL. Having first experimentally sorted out the highly complex
viscous phenomena in the transonic speed range (see ref.6), he next evolved the concept of
the "peaKy" pressure distribution" (ref.7), and showed that in fact, a for all practical
purposes shook free transonic flow could experimentally be realised.

The first opportunity of systematically confronting transonic potential theory and
experiment for aerofoil flows, came with the development of the theory of quasi-elliptical
aerofoils at NLR (refs. 8, 9).

As a survey of the existing experimental information has very recently been given
(ret. IC), we will here restrict to pointing out the main facts. The purpose of the present
paper is to demonstrate that the fundamental theorems on the mathematical "non-existence" of
transonic potential flo. due to Busemann and Morawetz, together with some recently discovered
facts about the time dependent stability aspects, and the experimental data now available,
provide on the level of present day knowledge a consistent physical picture of transonic flow
in the high subsonic speed range. In our opinion this means that at any rate the old
"transonic controversy" can be regarded as definitively settled.

x) Senior Research Fmgineer, Aerodynamics Division.
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2 Experimental facts.

Although now several examples of theoretical solutions for the transonic potential
flow around lifting quai-elliptical aerofoilsare available, the experimental evidence
is at present entirely based on symmetrical aerofoils. The reason is simply that these
were much earlier available. This is, however, not at all a serious limitation, as long as
the aim is a basic investigation of the stability of the shock-free supersonic region.
As the transonic effects are purely local, one would not expect to miss anything worthwile
this way. From an experimental point of view, the symmetrical flow has important benefits.
The absence of large wall interference and boundary-layer effects on circulation makes the
interpretation of the experimental results esqier and more raliable.

Twoevamples will be discussed. The aecofoil shape, theoretical design pressure
distribution and shape of the sonic line are given in fig.la, b. These examples were taken
from the collection of ref.11, and are designated as (0.1-0.675-1.6) and (0.115-0.75-1.2).
The first one is a 16 % thick aerofoil with design Mach number Moo - 0.745, having a pesky
pressure distribution with a maximum local Mach number M - 1.47. The other is 11 % thick
and has a pesky pressure distribution with a secondary expansion just in front of the
suction peak, the design Mach number being Moo - 0.806 and the maximum local Mach number
M ax - 1.26.

Fig.2a, b shows the comparison between theory and experiment at the design condition
for the 16 % thick aerofoil. In fig. 2a the pressure is plotted against the ohordwine
distance measured from the leading edge, in fig. 2b against the aerofoil ordinate normal to
the chord. The experimental design Mach number is somewhat higher (0.002) than the
theoretical value, in accordance with the estimated blockage effect in the wind tunnel.

The discrepancies between experiment and theory are due to model imperfections and
boundary layer effects. The slight underexpansion in the supersonic region, leading to a
very weak shook wave, is caused mainly by a small laminar separation bubble at 8 % chord,
free transition being at 12 %.

Fig.3 shows a shadowgraph picture of the flow around the 16 % thick erofoil at the
design condition, with the theoretical shape of the sonic line drawn in. The shadowgraphs
were obtained with a short duration spark exposure that arrests upstream-moving disturbances.
The distrubances form sharp pressure fronts at these speeds,

The appearanoespf laminar separation bubbles is a consequence of the relatively low
Reynolds i =ber (2.10 ) of the tests. These separations would undoubtedly disappear at
full-scale Reynolds numbers. The only way to avoid separation effects in the wind tunnel is
by fixing the transition point of the boundary layer. This, however, has an unfavourable
effect on the agreement between theory and experiment. The transition strip generally
disturbs the flow by generating a weak shock wave.

A still better agreement between theory and experiment has been found for the 11 %
thick aerofoil, as shown in fig. 4a, b for a Maoh number which is considerably higher than
the design Mach number. The reason for the very good agreement in this particular case is
the absence of separation. For Mach numbers close to the design value there is a relatively
large separation bubble in the laminar boundary layer. At slightly higher Mach numbers,
however, this separation bubble disappears. The agreement leaves little to be desired. On
the basis of pressure plots and optical observations, the flow is really shook-free.

Having thus settled the design case, the next question of interest is the sensitivity
of these flows, more generally their off-design behaviour. Fig. 5 demonstrates the
development of shocks both below and above the design point for the 11 % thick aerofoil. The
relevant shadowgraphs are given in fig. 6a, b and o. These data show the shock-free design
condition embedded in a family of flows involving shock waves. Similar results have been
obtained for small variations in angle of incidence.

From these data, and also from the response of the flow to things like transition
strips, one can get the impression of a great sensitivity of these flows. In a sense, of
course, this is true. Yet in another sense, the flows are rather insensitive. In fig. 7 the
dependence of the drag coefficient on Mach number is given for the 16 % thick aerofoil,
which shows that although there are shocks in off-design conditions, the wave drag remains
negligible in a rather large interval. In fact, this 16 % thick aerofoil has a higher
drag rise Mach number than the 12 % thick NACA 0012 aerofoil.

The following conclusions may said to constitute "physical significance" of the
transonia potential flow solutions in the engineering sense.
1. The differences between experiment and theory are due to model imperfections and

boundary layer effects. The results suggest that the theoretical potential flow can be
approached arbitrarily close if these effects are eliminated.

2. The shock-free design condition is embedded in, and can be reached in a stable manner
from, the neighbouring conditions involving shocks. In a usefully large interval of
conditions, the wave drag remains negligible.
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3 Mathematical problems.

Having reviewed this experimental material, it is perhaps useful to spend a few
remarks on the interpretation of the famous Morawetz theorems, which have been regarded as
providing the key to a physical understanding of these flows,

Very roughly, the ,ontent of one of these theorems L as follows. Consider a given
transonic potential flow solution describing a profile flow, for instance a quasi-elliptical
aerofoil flow. This solution can also be regarded as the solution of a boundary value problem
for the equations for plane compressible potential flow, with the given aerofoil shape and
thu free stream as boundary conditions. Next, perturb the prcfile contour by an arbitrarily
small amount in the supersonic region, and Morawetz proves that now no solution t5 the
boundary value problem exists. In contrast to the subsonic flow case, a transonic potential
flov is "not continuously dependent on the boundary data".

Prom the physical point of view, we must side with Busemann et al., and conclude - on
the principle that nature does not jump - that the boundary value problem in potential flow
theory is not a physically adequate model for a real transonic flow. In other words, the
basic assumption of strict irrotationality makes the transonic flow too rigid a fabric to be
smoothed around an arbitrary shape. But we must own the other side, that we cannot
logically reverse this conclusion in the sense that if we try to model a given theoretical
solution in a wind tunnel, the resulting type of flow is necessarily drastically different.
The results of the last section show that this is not the case.

If, however, we had to discuss the physical significance of potential flow solutions
in t1P strict mathematical sense, as opposed to the engineering sense of "adequate"
agreement between theory and experiment, we would have to study viscous compressible flow
solutions in the limit Re-oo , and also the unsteady variant of thesu in the limit t -- oo

The problem would be to investigate under what oonditionis these solutions would have a
potential flow as the limiting case. This problem in far beyond the power of the available
mathematical methods, even for incompressible flow; tborefore the physical significance of
potential flow solutions at any flow speed is at the moment in the strict sense, an entirely
open problem.

If, for a moment, we would be allowed to venture into the realm of science fiction, and
speculate what at some distant future date the Tnyaioal significance of transonic potential
flow solutions might look like, we would get simothing as follows. In accordance with
Morawetz' theorems, we would expect that in gtJneral, no transonic irrotational flow limit
would exist for a viscous solution as Re-..mo , except for a very special set of isolated
"admissible" contours, which would admit a pctential flow limit at one particular Hach
number each. If then we could prove, that fo: much Mach numbers the discrepancy between a
viscous flow solution and a transonic potential flow solution could be made arbitrarily
small for Re sufficiently large and an aeroloil shape sufficiently near an "admissible" one,
we would have obtained a mathematical ccnoe;t of physLcal significance which would cover
todayb experimental data.

Returning to fact rather than fiction, we must conclude that the import of Morawetzts
theorem is computational rather than physioai, an it states the impossibility of
constructing transonic flow solutions for a tiven aerofoil by posing a direct boundary value
problem in the physical plane for the equatins for potential flow. Accordingly, the
potential fl)ws around quasi-elliptical sero oils were mathematically defined in a quite
different, inverse way; alternatively, moderi, developments of numerical methods for the
direct problem do not make use of the equations for potential flow but include simulated
viscosity terms. In conclusion we might say that the problem of the physical significance
of transonic potential flow solutions is in the mathematical sense essentially an open
problem, but not (at the moment) a controversial one.
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Unsteay aeeots.

A second line of argument against the physical existence of shock free transonic flows
was based on the supposed unstability of these flows as a result of unsteady waves moving
upstream into the supersonic region. This argument was developed by Kuo (ref.4), and also
mentioned by Holder (ref.6). In its briefest outline, the argument was that suoh waves, when
superimposed on a steady shook free basic flow could move upstream aa long as the local
steady flow speed was subsonic, but as they entered the region of supersonic local flow
speeds would necessarily come to a standstill, coalesce, and interact with the basic flow
until a stationary shock wave was formed.

It is clear from the experiments discussed in section 2 that this does not, in fact,
happen, but we can also give a simple physical explana~ion why it does not.

Let us first perform a numerical, or rather graphical, experiment. We take a
transonic quasi-elliptical aerofoil flow, and at time t - 0, generate an acoustic pulse at
the trailing edge. Knowing the velocities in the outer flow field, we can easily construct
by Huygens' principle, the development in time of the wave front moving locally at a sonic
relative speed. The picture we get in this way is sketched in fig.8. What happens is that
the wave front, in the gradient field of the basic flow, turns over in such a way, that on
entering the supersonic region, the wave front is everywhere inclined at an angle with the
local flow velocity larger than the local characteristic angle. This means that the
component of the flow velocity normal to the wave front is everywhere smaller than the
sonic value, and so the wave front moves locally as if in a subsonic flow. Far from coming
to a standstill, the wave moves upstream with respect to a stationary observer, at an even
faster rate in the supersonic region than in the subsonic part downstream.

Now this is only one particular case, and we can ask whether this property holds
generally. A simple analysis shows that the answer is in the affermative. Let j be the
local velocity veotor, c the local velocity of sound, and t and r unit vectors tangential
and normal to the wave front. The local rate of turning to of the wave front can be
expressed as

c. -grad o . t + t . Vq. (1)

If now we express the rate of strain tensor vj in a local reference frame along and
normal to the streamline, we have

Vqu ,(2)

with q and e as local velocity and flow angle. In irrotational and isentropic flow we have
the equations for continuity and irrotationality in this frame a

(1 - 2 ) q + qn -O (3)

% - qQa - 0

The local propagation speed of the wave is

o' - o (1 - Msinm ), (4)
where o is the angle of the wave front with respect to the local velocity vector, and the
locaIl spend of sound is connected with q by t

2 2 c 2

_q_ +_o 0(5)
2 i -1 ~'1

Now if a wave front would be sta~ionary, we would have o' - 0,cW- 0. The first of these
relations means, of course, that the wave front is aligned along a characteristic. To see
whether in that case also W - 0 is possible, we substitute the relation o' - 0 in eq.(1),
and using eqs (2), (3), (4), (5) we obtain i

_- -- (2 - M2) (1 -. i). (6)
M2 2 4) ('-T7



1-5

If we have W > 0, this means that the wave front is rotating into the "safe" direction,
i.e. the interval of wave angles in which the local velocity component normal to the wave
front is subsonic (fig.9). Now it follows that W > 0 obtains !f

s <8 o , (7a)

M2< (7b)

a < 1_ (7c)

Condition (7a) expresses convexity of the aerofoil in the supersonic region, (7b) says
that the local Mach number should be smaller than 1.58 for y - 1.4, and expression (70)
means that the Jacobian of the hodograph transformation

J , uxv), 0

and this is always the case in the class of analytic hodograph flows(rsf.9,pp.c.nd we
could at most have J a 0 at an isolated point of the contour of a general aerofoil.

We have then, that the waves are locally always turning into the safe direotioL, and
some further reflection (ref.12) shows this to mean, that all unsteady waves must traverse
the supersonic region in a finite time. This turning effect of disturbance waves was
disregarded in Kuo's semi-one-dimensional instability arguments, and is in fact the reason
why these two-dimensional flows behave differently from the stability point of view than
one-dimensional diffuser flows do.

We would like t9 add one remark on condition (7b). Laitone (ref.1) has conjectured,
that M 2 (3 - r) would be the maximum possible local speed in a transonic flow. It
is easy to see (ref.12) that a transonic flow with a higher local Mach number is unstable
against unsteady disturbances, and so these cannot physically be realised. On the other
hand we have as yet not been able to prove that such flows cannot be found, although for
quasi-elliptical aerofoils the record stands today not higher than Mmax . 1.54.

Conclusion.

Shock-free transonic flow t fact or fiction ? The answer depends obviously on one's
definition of what is "shock-free". Probably nobody would care to deny, that in every real
transonic flow, shock phenomena could be detected if scrutinised closely enough.

From the engineer's point of view, however, much more interesting is the fact, that
agreement between potential flow theory and experiment can be obtained within all practical
limits, if the experiment is conducted with sufficient care. Moreover, the flow changes into
off-design conditions in an entirely smooth and stable way, and the wave drag remains
negligible in a promisingly large interval of neighbouring conditions.

From the mathematician's point of view, the problem would be to decide what sense
transonic potential flow solutions could be regarded as an asymptotic limit of solutions of
the equations for viscous compressible flow. Unfortunately, it looks as if this problem
will remainopen for some considerable time.

From the physicist's point of view, the essential difference between the stability
behaviour of transonic one-dimensional, and a two-dimensional flow has been clarified,
so that we now can understand how a "shock free" flow stays alive.
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Lax-Wendroff Difference Scheme Applied to the Transonic Airfoil Problem

Robert E. Singleton

Lockheed-Georgia Company, Marietta, Georgia



SuMAry

A numerical method is developed for solving the unsteady-flow equations for the flow of a noncon-
ducting, invisoid gas around an arbitrary profile. The governing equations are differenced by a
two-step, Lax-Wendroff scheme, and steady-state solutions are sought in the limit of long times.
Boundary conditions are numerically prescribed and the Lax-Wendroff method is shown to give nesr-

isteady-state, subsonic Mach number distributions after a few hundred time steps. The method gave
results for transonic flow with a shock wave for the one case considered. This matter is being
further investigated with a more accurately given airfoil. The procedure requires large computer
memory and long computer runs.
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Lax-Wendroff Difference Scheme Applied to the Transonic Airfoil Problem
+

Robert E. Singleton

Lockheed-Goorgia Company, Marietta, Georgia

I. Introduction-

The mathematical complexities associated with the transonic potential flow over arbitrary pro-
files are well known; however, the usefulness of a successful method continues to inspire
researchers to look for methods of solution. One heretofore unexplored possibility is to cir-
cumvent some of the mathematical complexities by bringing the tremendous capabilities of modern
high-speed computers to bear on the problem. This paper attempts to accomplish this task by
developing a numerical procedure for the transonic potential flow over a non-lifting, arbitrary
profile to be solved on a high-speed computer.

The governing equations describing the conservation of mass, momentum and energy for the
unsteady flow of an inviscid, nonconducting gas are written in divergence-free form. By retain-
ing the unsteady terms, these partial differential equations remain hyperbolic, even when the
flow is of a mixed type containing both supersonic and subsonic regions. The steady-state solu-
tion is sought asymptotically as time approaches infinity. This procedure is also desirable
because the shock-wave relations are contained as a special case of the governing equations,
provided weak solutions are allowed. Consequently, the shock wave is considertd as part of the
solution and not as a predetermined interior bouodary. To mention a few references, Godunov
et al.l), Burstin(2), and Bohachevsky et al.03) hfy all developed this procedure for two-
dimensional, supersonic, blunt-body flows. Tho*mn.l4 has treated the viscous supersonic flow
over a flat plate using this appr 9h, Burstein.5 ) has studied supersonic flow in a constricted
channel, and Thommen and D 'Attore .apply this technique to three-dimensional supersonic flow
fields. Quite recently, Yoshihara(7) reported successful results for the transonic flow with
shock waves over a circular-arc profile.

Apparently the application of unsteady numerical methods for generating steady-state solutions
is quite wide, and this paper is concerned with the application of this technique to blunt,
two-dim6nsi9gl non-lifting profiles. The geometry of the profile is chosen to be one of
Nieuwland'a e isentropic compression profiles found by using the hodograph method. The govern-
ing equations are differenced by a modified two-step Lax-Wendroff difference scheme which is
quite similar to the scheme used by Themen(4) . The boundary conditions at the airfoil surface
are satisfied by a multiple reflection technique, and the boundary conditions at the outer edge
of the mesh were adjusted to allow unsteady effects to pass through.

The following sections of this paper describe first the actual formulation of the equations and
techniques to be used. Secondly, the preliminary results are given and the indicated modifica-
tions to the program are discussed. The next section deals with the final results obtained and
the final section gives the conclusions from this research.

II. Formulation of the Method

The coord tos for the chosen airfoil section are given to the nearest one thousandth by
NieuwlandtJ who also gave the Mach number distribution over this airfoil, found by using the
hodograph method. A Cartesian coordinate system ir used, with all lengths made dimensionless
with the airfoil chord length. The front stagnation point of the airfoil is located at x - 3.8,
y -3 .0. The calculation grid is distributed in the area 1 t x A 7.6, 3.0 1 y A 4.96. Since
the airfoil is symmetric and non-lifting, only the upper surface of the airfoil is considered.
Thus, the calculation grid extends 1.96 chord lengths normal to the airfoil and 2.8 chord
lengths in front of and behind the airfoil. Although the choice of mesh size is a difficult
decision to make prior to the calculations, it was decided to let x - 0.06 for 1 :S x - 7.6,
Ay - 0.04 for 3.0 1 y 1 3.08, &y - 0.06 for 3.08 1 y - 3.20, and by - 0.08 for 3.20 1 y A 4.96.
This initial choice for the grid has 2,997 points. The Courant-Friedrichs-Levy condition for
stability as derived from linearized analysis given a guide for establishing the time step.
It is easy to show that if

IL2 M
", - 1tMa

where A - x or Ay, Mma, - maximum local Mach number, M. - freestream Mach number, then the
Courant-Priedriohs-Levy condition is certainly satisfied. Recognizing that this requ.rement
for stability can serve only as a guide to nonlinear problems, a bt of .008 was chosen such
that the above condition would be geneLoualy satisfied for reasonable values of M., , T
and &.

+This paper resulted from work sponsored by Aerospace Research Laboratories, Office of Aerospace
Research, United States Air Force under Contract AF 33(615)-5397.

Scientist, Lockheed Georgia Research Laboratory; Lecturer, School of Aerospace Engineering,
Georgia Institute of Technology.
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The governing equations of notion art next considered by letting c - chord length of airfoil,
- gas density, u', v' - gas velocity components, E' internal plus kinetic energies per

unit volume, a' ?'u n' - v'. Then by defining dimensionless variables

Y. y, y , w , M' % .,U .n, U> U ., L 'L U.'

the conservation of mass, moientum, and energy for an inviscid, nonconducting gas can be
written

Wt

where the subscript denotes differentiation and W, F, and G are vectors defined by

-- 2

- rr

W=  Rw) =- *. Gw) = t,,,

'L-- M 3+Mnk 4 - k"+"

These partial, nonlinear, differential equations are differenoed by the two-step Lax-Wendroff
method to obtain a second-order acotoe difference shome. This scheme is similar to those
difference schemes given by Toaunk41 and Bursteit(2) and is given below. Let W h . W(t &t'
n x, .- 4.JA) then

kcj wk kt '  F k -

+,.. ., + FT13 I- Gj> -F -
,i t. + itX jG

S-jA -k k .

W.~ ~ Z. at 1'' '. at-l*J

, " ., -Y .- .,- i_

The phytioal boundary conditions are that uniform flow conditions exist far from the airfoil,
and the normal velocity on the airfoil is zero. However, since the grid system is finite and
tne flow field is unsteady, the boundary conditions around the outer edge of the wesh system
are not well defined. Along the incoming boundary, x - 1, 3.0 1 y A 4.96, the flow is speci-
fied as uuiform, freestream flow. Although this specification of the boundary condition does
not allow for unsteady effects, results of the calculation showed that only very small distur-
bances reached the forward boundary, and these small disturbances apparently caused no problems.

Along the upper boundary, 1 A x 1 7.6, y - 4.96, it was first specified that m - 1, and the
other three variables were determined by backward linear interpolation in the y-direction. It
was thought that, in this manner, the freestrea pressure would be maintained along the upper
boundary. However, the results of several long-time runs indicated that unsteady effects were
not getting through the upper boundary but were propagating back into the flow field near the
airfoil and causing a divergence there. By specifying a backward linear interpolation in the
y-direotion on m also, this problem was eliminated. The boundary conditions on the downstream
boundary x - 7.6, 3-.0 - y : 4.96 were set by backward linear interpolation in the x-dlrection
on all variables. The line of symmetry was specified by symmetrically reflecting , , and E
and tutisymmetrically reflecting n across the line 1 -x - 7.6, y - 3.0.

The application of boundary conditions along general curved surfaces is always a difficult
problem in numerical analysis. The curved airfoil surface of interest here is no exception,
but considerable effort was exerted to devise a suitable scheme based on the reflection prin-
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oiple. To illustrate the technique, a mesh point whioh lies outside the airfoil but with a
neighboring moeh point, either a a x or fty away, lying inside the airfoil is considered. The
current valie of the vector W at the outside point is denoted Wo, and likewise the current
value of the vector W at the inside point is denoted Wi . The line joining the inside and out-
side points cuts the airfoil surface at a unique point where the slope is AYIdan. The dis-
tance from this point on the airfoil surface to the outside mesh point is denoted by L1 and
the distance from this point to the inside mesh point is denoted by L2 . 2be Wi is determined
as a functicn of Wo by requiring that the linear interpolation for the velocity normal to the
airfoil surface at the point of intersection on the airfoil surface be zero. The values for
the velocity tangential to the airfoil surface at the intersection point on the airfoil as
well as p and E are taken as being the same as the corresponding values at the outside point.
These conditions are satisfied by setting

S00

-_ (y4 t )_ 0 dl
V = to io~

4 ~i+ -±a U~~ -Y/ _

techniqueI + (dY Id3 0j

This technique requires the calculation of the airfoil slope, dYJAd , at the intersection
point. At first, this was accomplished by looking in the given coordinate table, finding the
nearest two points on either side of the intersection point and calculating the slope from
this linear approximation. Later the procedure was modified as will be described in the next
section. Also, since several outside mesh points can share the same inside mesh point, multi-
ple storage capability at each inside point must be allowed for.

It was assumed that initial conditions could be arbitrarily chosen subject to compatibility
with the boundary conditions. The first calculations which were performed were done with
uniform, freestream flow specified at all interior points of the mesh, i.e.

0

i

Since the equations are independent of the Mach number, the initial oondiltions and the boun-
dary conditions on the incoming boundary are the only places where the Mach number enters the
calculations.

III. Preliminary Results

Having written a computer program for the above equations together with their boundary and
initial conditions, computations were carried out first on an IBM 7094 comuter and then later
with a Univac 1108. A long-time run of 250 time steps was made with Mo - 0.704 and a at -
.008. The results for the surface Mach number distribution are shown in Figire 1 aloag with
a plot of the airfoil surface. The calculations diverge at K - 250 at x - 4.04, as results
at earlier values of K demonstrate.

(2)In view of the results of Burstein , it was perhaps not surprising that the calculations
did diverge, as Burstein shove, that one might suspect instabilities to occur in the vicinity
of stagnation points and sonic lines. Since Burstein used a pseudo-viscous term to achieve
stability in his case, a similar effort was made for the present case. To damp oscillations
which might be generated, an artificial viscosity, tailored after Burstein's model, was devel-
oped and added to the basic difference scheme. However, the inclusion of the pseudo-viscous
term did not prevent the divergence of the resultant calculations. Moreover, a wide variety
of values for the rate of increase of dampirg, the maximum value of the damping, and the time
stop were tried with little improvement in the results.

At this point, it was suspected that the divergent character was perhaps a result of very poor
accuracy in the transonic range coupled with very crude initial conditions. To study this
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idea, a long-time run of 800 time steps was made with zero viscosity for MOO 1/2. Figure 2
shows the results to be converging to a subsonic solution; however, soe oscillations or
"wiggles" appear in the Mach number distribution.

The results obtained for MO = 0.5 at K - 800 were then modified by letting

for all i and j, and then these results are used as initial conditions for MOD 0.6. After
a few hundred time steps of calculations, the results were similarly modified to get initial
conditions for Moo o .656 and then similarly for M.o - 0.707. Figure 3 shows that this
approach to the transonic regime yields better results than before; however, it also appeare
that the oscillations which appeared in the subsonic distribution grow to substantial amounts
at transonic speeds and thus prohibit any meaningful results.

In order to get better results, several modifications to the existing computer program were
made. First, the calculations demonstrated an inability of the existing mesh size to resolve
the flow field accurately in the vicinity of rapid flow changes, i.e., the nose region. Con-
sequently, the mesh was made more dense over the front half of the airfoil by inserting eight
more vertical lines between x - 3.82 and x - 4.30, which resulted in 224 additional mesh
points. The method of representing the airfoil by linear interpolation between given tabular
points was examined by comparing the resulting airfoil ordinates and slopes with the theo-
retical ordinates and slopes given by Nieuwland. The ordinates and slopes calculated by the
computer program were found to be accurate to the nearest hundredth, while Nieuwland's theo-
retical values were given to the nearest thousandth. Hence, the computer program was modified
to do fifth order polynomial interpolation for the airfoil ordinates and slopes were computed
from this interpolation polynomial. This procedure gave ordinates and slopes at least as
accurate as Nieuwland's data.

Next, attention was given to the numerical problem of determining the dependent variables at
non-mesh points from information given at the mesh points. For example, if the Mach number
is given at the mesh points close to the airfoil surface, what is the Mach number on the air-
foil surface? This problem is illustrated in Figure 4. In Figures 1, 2, and 3, the Mach
number at x (see Fig. 4) was determined by a linear extrapolation of the Mach number at
points 5 & 3. However, this procedure does not take into account the flow field variables
at points 2 and 4. Clearly, the Mach number at some point on the surface between xj and x4
should be some sort of suitable average of the Mach numbers at points 1, 2, 3, and 4. Conse-
quently the Mach numbers at xl, x2 , x3, x4 , denoted by M1, M2, M3 and M4 , are computed by a
linear interpolation between the flow quantities at the points 1, 2, 3, and 4 and their
respectively associated flow quantities at the interior point. The resultant Mach numbers
are then averagd as are the four abscissas to give a Mach number at a specific point on the
airfoil. This procedure for calculating the Mach number on the 4irfoil surface allows the
surface Mach number to depend on a surrounding region rather than on a verticle needle.

IV. Final Results

With these modifications, several calculations were performed for a freestream Mach number of
0.5. The results indicated the need for three more changes in the boundary points describing
the airfoil surface. The first two given ordinates for the airfoil nose were not sufficiently
close to allow an accurate approximation by a fifth-order polynomial. Consequently, a parabola
was fit to the nose section from which additional data were generated. The trailing edge pre-
sented another problem as the theoretical trailing edge was a cusp and not a stagnation point.
Since it was not known how to simulate a cusp numerically, the trailing edge was treated as a
stagnatioa point. Also, it was noticed that when mesh points in the flow field occurred very
close to the airfoil surface, the calculations diverged at those points after about 50 time
steps. This implies that L1 - 0 and consequently very large elements appear in the reflection
matrix. In fact, it was found that if L2 L1 exceeded about 10, divergence occurred. Appar-
ently, an L2/L 1 exceeding 10 implies that the effective a is reduced so much at the boundary
that the at is too large for stability. To correct such a situation the verticle mesh lines
on the front and rear of the profile must be shifted somewhat to insure that L2/L1 is not
large.

Having made all the necessary modifications, calculations were once again begun for a free-
stream Mach number of 0.5. Figure 5 shows the results after 800 time steps and the near-
steady state solution hao apparently been reached. termining initial conditions as described
previously, calculations have also been done for M. - z.6 and 0.704. Figure 6 gives the
results for F, - 0.704 after 1200 time steps and Table 1 illustrates the changes which occur
in the Mach number distributions for increasing time.

The results shown in Figure 6 are quite interesting as a shock wave is apparently predicted.
The steady-state solution is more slowly approached than for purely subsonic flow, but Table I



2-5

shows that chazges in the Mach number distribution with time-step are quite saal. after about
1000 time steps. The shock wave is smeared out over about three mesh widths as is character-
istic of Lax-Wendroff methods. The shock wave is situated around x - 4.3 which is approximately
the position of the downstream sonic point predicted by Nieuwland. The discrepancy between
Nieuwland's results and the calculated values are apparently due to inaccuracies in the deflni-
tion of airfoil geometry. It is now known that airfoil ordinates accurate to five decimal
places must be furnished to enable the ,acurate determination of the surrounding potential flow
field. In fact, in view of Morawetz's well known analytical work, it would not be too sur-
prising if slight deviations from Nieuwland's isentropic profile did produce a shook wave. It
is also interesting to note that the computations show the well known small region of increased
flow velocity behind the shock wave in transonic flow over profiles.

V. Conclusions

The Lax-Wendroff difference scheme is apparently capable of predicting both subsonic and tran-
sonic flow fields over arbitrary profiles. For subsonic flow, the near-steady-state solution
is obtained after several hundred time steps. For transonic flow, the near-steady state solu-
tions require an order of magnitude more time steps. The true steady-state solution, of course,
would require many hundreds of time at pa; however, most of the transient effects become negli-
gible after the first several hundred time steps. The method of prescribing the boundary condi-
tions apparently functioned well. A check of the parallel flow requirement at the airfoil sur-
face was performed at intervals of 50 time steps, and it was found that no mass flow was
crossing the airfoil surface. The boundary conditions around the outer boundaries of thc mesh
also caused no difficulties and apparently 3aintained uniform freestream flow at the entrance
boundary without creating large disturbances in the flow field.

The results given in Figure 6 indicate that it would be very interesting to use the Lax-Wendroff
method for a profile which is determined accurately to five decimal places, and to see the
roeultwhjen the freestream Mach number increases. Such airfoil data have been given by Boer-
stoel 1 0) for a profile which exhibits shock-free transonic flow. This calculation is currently
being done using the program described in this paper with one modification. The leading edge
is now fit with a circular arc rather than a parabola. These results should be available in a
few weeks and will be presented at the AGARD Specialists' Meeting in September.

To be practical, however, consideration must be given to the limits imposed by the computer.
The existing program uses a Univac 1108 computer and requires about 50,000 storage locations.
The program reqtres about 5.3 seconds per time step, which emphasizes the need for good initial
conditions. Obviously, the program is expensive in terms of computer time and storage require-
ments. However, optimizing the current program could possibly reduce the running time by a
factor of 2, and by the time the present m tcd is developed for arbitrary lifting profiles,
bigger and faster machines will be availablek11), if past computer development is any clue to
the future.
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TABLE I

MACH lUMBER DISTRIBUTION FOR Moo - 0.704

x K
0 1000 1100 1200

3.8017 0.2313 0.2116 0.2091 0.2108
3.8338 0.8005 0.7487 0.7421 0.7443
3.8688 1.0774 1.0378 1.0328 1.0343
3.8846 1.0982 1.0528 1.0508 1.0513
3.9332 1.0389 1.0489 1.0526 1.0550
3.9702 1.0000 1.0391 1.0413 1.0464
4.0003 1.0333 1.1174 1.1167 1.1221
4.0302 1.0206 1.1514 1.1532 1.1614
4.0602 1.0243 1.1650 1.1682 1.1746
4.0902 1.0127 1.1763 1.1846 1.1912
4.1202 1.0122 1.1623 1.1700 1.1756
4.1501 1.0047 1.1723 1.1789 1.1893
4.1800 0.9995 1.1483 1.1507 1.1679
4.2099 0.9896 1.1684 1.1741 1.1833
4.2399 0.9822 1.1316 1.1359 1.1567
4.2698 0.9708 1.1981 1.2095 1.2010
4.3032 0.9636 1.0876 1.0851 1.0689
4.3590 0.9423 1.0463 1.0656 1.0433
4.4190 0.9222 0.9275 0.9160 0.9069
4.4873 0.8805 0.9271 0.9278 0.9406
4.5633 0.8126 0.9086 0.9087 0.8413
4.5937 0.7858 0.8625 0.8587 0.8096
4.6640 0.6985 0.7588 0.7546 0.7009
4.7377 0.5600 0.6081 0.6052 0.5757
4.7817 0.3981 0.4305 0.4283 0.4102
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A procedure is presented to calculate the steady planar flow over a prescribed lifting
profile. To obtain a properly-posed problem for the mixed elliptic-hyperbolic flow, an unsteady
approach is used, where the desired steady flow is the asymptotic limiting flow for large times
arising from a sequence of unsteady flows generated by placing a "leaky" profile in the desired
uniform free stream (leakiness initially permitting the free stresm to flow through the airfoil
unhindered) and then impulsively turning off the leakiness. The resulting motion is calculated
by a finite difference analogue of the unsteady Euler equations where a "diffusing" difference
scheme is used. With this difference scheme an artificial viscosity is introduced by which
shock vaves acqire a steep profile appearing at their correct location with the proper jump
conditions fulfilled. To obtain the required resolution, fine lattice mesh is embedded in the
surrounding coarser mesh at the expected location of the shock wave, as well as about the leading
edge. Two examples have been computed. The first is the flow at M. . 0.85 over a biconvex air-
foil of 8.4% thickness ratio at zero angle of attack, which is intended to demonstrate the ability
of the procedure to evolve shock waves. Although the programmed procedures can treat a blunt-
nosed profile at angle of attack, we consider instead, for the second example, a blunt-nosed
shockless profile at zero angle of attack computed by Nieuwland and Boerstoel using the hodograph
method. The intent here is to determine whether this shockless flow is stable, and remains in-
deed shockless after having been perturbed by the many unsteady disturbances introduced in the
process -f reaching a steady state.
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1. INTRODUCTION

The design of a transonic aircraft frequently involves the consideration of a complex three-
dimensional supercritical flow. Nevertheless in the wing design, planar flows play a significant
role because of the large extent of such flow, either naturally present as in the case of a high
aspect ratio wing, or produced by design as a result of a fuselage contouring to obtain favorable
interference effects in the case of smaller aspect ratios. The resulting flow is a viscous one
involving a turbulent boundary layer-normal shock interaction. This interaction is a strong inter-
action, disallowing the usual decoupling of the inviscid and viscid portions, so that an approxi-
mate interaction theory as that due to Gadd (Ref. 1) must be used prior to applying the usual
iterative scheme. In the latter scheme, an essential ingredient will be the calculation of the
overlying inviscid flow. It will be the purpose of the present paper to present an exact procedure
to calculate such flows.

There presently does not exist a satisfactory procedure to calculate inviscid supercritical
flows. There has been an extensive effort in England on semi-empirical methods characterized by
the work of Sinnott and Osborne, but, despite their significant accomplishments, these methods fall
short of desired requirements. Similarly the integral equation approach, first zonsidered by
Osatitsch and subsequently expanded by many others, has had surprising succesr, but it has been
unable to handle blunted, lifting profiles. There appears to be no simpler alternative than to
start from the full Euler equations using a numerical procedure. The incompatible characteristics
of subsonic and supersonic flows, as well as the problem of systematically locating the shock wave,
would discourage a steady approach using the relaxation procedure, which inherently is a subsonic
method. We shall therefore adopt an unsteady approach where the desired steady flow will be ob-
tained as an asymptotic limit for large times by a marching procedure from a given initial flow.
The marching procedure for the initial value problem is properly set for both subsonic and super-
sonic flows. Initially one will start from a uniform parallel flow corresponding to the free
stream conditions. At zero time the boundary conditions representing the body will be impulsively
"turned on." The consequent unsteady motion will then be treated using a finite difference
analogue of the unsteady Euler equations where a "diffusing" difference scheme (to be described
later) is used to approximate the partial derivatives. The use of this difference scheme gives
rise to an inherent "artificial viscosity," similar in nature to that of Von Neumann and Richtmyer;
and shock waves will acquire a profile, ceasing to be discontinuities, and will appear quite
naturally at their proper location. There will thus be no special subroutine required to locate
and treat shock waves.

To illustrate the above procedure we shall calculate two examples. The first is a preliminary
effort intended to demonstrate the ability of the method to evolve the primary shock wave. For
this case we shall consider a sharp-nosed biconvex profile at zero angle of attack. For the second
example we shall recalculate one of the shockless flows obtained by Nieuwland and Boerstoel
(Refs. 2 and 3) using the exact hodograph equations. Such shockless flows have been questioned by
many (see, e.g., Refs. 4 and 5) who have concluded that these flows were unstable leading ultimately
to flows with shocks. The purpose of the second example is to attempt to verify this instability
(to the extent that one can by a numerical procedure) and to determine whether or not the resulting
shock, if it indeed does arise, is weaker than for a compRrable "nonoptimum" case. The shockless
profile considered is blunt-nosed, symmetric, and nonlifting.

The unsteady procedure used above to calculate these examples is, however, able to handle
general lifting profiles, but we shall defer the calculation and the reporting of these cases for
a later time.

2. BASIC FLOW EQJATIONS AND AUXILIARY CONDITIONS

The starting point of the numerical approach is the set of Euler equations re-expressed in a
conservation form as follows using the usual notations and a cartesian coordinate system

+ -a

at ax ay

where the vectors in component form are given by

Pu Pu2+p

nex H e a uvj .

and the coordinate x being in the free stream direction.
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Since, in flows of interest, shock waves are sufficiently weak that one may assume an isentropic
flow; thus,

p O a Const.

y taken subsequently as 7/5.

For the boundary conditions, ve require the flow to approach at all times a prescribed uniform
flow sufficiently far from the airfoil, and at the &.:foil we require the impulsive condition

MW. - ) H(t). o

ihere

IVi . +0 + arg = - arc tan

i, outward normal to the profile, and

H(t) 0 t<O
1 t2>0

At t 0 0 we assume a uniform flow at the free stream conditions.

For the lifting case, the Kutta condition is enforced at the pointed trailing edge by requiring
the flow in the vicinity of the trailing edge to be locally symetric about a line bisecting the
external angle at the trailing edge.

3. DFr"W CE SCHME

In the course of the studies attention has not been confined to a single type of finite
difference scheme.

The results presented for the biconvex airfoil at zero angle of attack were obtained with a
two step explicit finite difference scheme closely related to the procedure given by Lax and
Wendroff, Ref. 6. The results presented for the blunt-nosed airfoil were obtained using a simpler
one-step diffurion-stabilized explicit difference scheme for most of the computation field and an
iterative imp°jcit scheme to advance the solution in the extra fine mesh region around the airfoil
nose.

Since the work being described in explortory, various methods for satisfying boundary condi-
tions, and applying initial conditions, need to be investigated. Therefore, in order not to be
excessively troubled by instability of the computations due to severe starting conditions, or
poorly chosen methods for applying boundary conditions, relatively simple difference schemes
having easily controllable damping properties have been used. Stability and accuracy in difference
schemes are qualities which are more-or-less exchangeable so a more accurate (and less stable)
scheme will probably be used in future versions of the program.

4. FIRS EXAMPLE - BICONVEX AIRFOIL

To illustrate the procedure we shall first calculate the flow over a circular arc biconvex
airfoil of 8.4% thickness ratio at zero angle of attack at a free stream Mach number of 0.85 in a
closed channel. The purpose of this simple example is to examine the ability of the procedure
to evolve the essentially normal shock. The simple mesh system was used for this example which
is shown in Figure 1. In the dashed region a finer mesh was incorporated at a later time to obtein
a better resolution of the shock wave.

It was found that the two-step difference scheme had insufficient damping to prevent a catas-
trophic instability of the calculation from occurring in the part of he field around the airfoil
nose. The characteristic Jagged response of the difference scheme to a strong disturbance, see
Ref. 6, was sufficiently intense in the nose region that negative absolute pressure vould occur at
a point somewhat aft of the airfoil nose and the calculation scheme would fail. Extra diffusive
damping waa added to the difference scheme (which degrades the accuray) in order to continue the
calculation. The resulting pressure distributions on the airfoil are shown in Figure 2 at various
times for the coarse mesh and with the addition of the embedded fine mesh. The final Mach number
contours in the flow field are next presented in Figure 3 for Mach number increments of 0.02. The
contours were obtained by a linear interpolation of the Mach numbers at the mesh points.
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5. SECOND EXAMPLE - SMCUSS, POFILE

For the calculation of the second example, a procedure has been developed which is capable of
handling the flow over a blunt-nosed profile with lift. Here we have incorporated the far field
boundary condition, the Kutta condition at the trailing edge, and a variable mesh. For the variable
mesh in the vicinity of the blunt nose, an extra fine mesh having a spacing of 0.01 chord is used.
The airfoil itself is imbedded in a fine mesh with 0.05 chord spacing and the field external to
the airfoil (within a 3.2 chords square) is covered with 0.2 chord coarse mesh. Overlapping the
coarse cartesian mesh a polar coordinate grid having 9 non-uniformly spaced ringe and 40 rays
extends the field to infinity. Here a suitable scale transformation of the radial coordinate is
carried out.

For the second example we shall recalculate the flow over a shockless profile calculated by
Nieuwland and Boerstoel using the hodograph method, and in particular we shall take the profile
denoted by the designation .11-.75-1.375 of Ref. 3. The calculation by the finite difference
method is in process and will be presented at the oral presentation.
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S OMMA IRE

L16coulement bidimensionnel autour d'un profiJ. oat calculd co limits asymptotique d'un 600 iseent

non permanent. Cmm doande initiales on pout, par example, utiliser une solution conmue et modifier

continuement en fonction du teops lea conditions aux limits., soit encore imposer dAs l'frnstant

initial k um dcoulement arbitraire lea conditions aux: limites soubaitdes ; l'dvolution do ldooulement
pr * tre ddterriine par la mdthode des caractdristiques. Un changement do coordonndea tel quo los

lige do courant at leure trajoctoirea orthogonales soient reprdeente par 'lea paralles aux axes

simplifie lea relations dois caraotdristiquesa ins' Txe l'orgiation des calculs niinriques.

L'organistion gdnrele du calcul oat ddorite ainsi quo loe solutions adoptdes pour lever certainos

difficultds :point dtarrt, conditior. do JOUJKCMK, linites du rdsoau, ondee do oo.

Qgelques rdsultats do osloula programmhs en Fortran sont prdsentde et discutds.

SUMMARY

APPIaCATION OF TEE METHOD OF U1NSTATIONARY CHAACTERSTICS

TO THE NIfJCAL CMTAI~TION OF A STEXDY COMPESSIMI FLOW

The two-dimonsional flow around an airfoil is computed as an asymptotic limit to an unstationary flow.

As initial data it is possible to use, for instance a kniown solution and modify, as a continuous

function of time, the limiting conditions ; or impose, from the initial moment, the desired limiting

conditions to on arbitrary flow ;the evolution of the flow can than be determined by the method of

characteristics. A change of coordinates such that the current lines and their orthogonal trajectories

are ropresente - by lines parallel to the axes simplify the relations of the characteristics as well as

the organization of the numerical computaticr

The general organization of an computation is described, as will an the solutions chosen to lift

cer'ain difficulties : tagaation points, JOUKOW~SKY's conditions, network limits, shock wawes.

A few results of computations, programmsed u Fortran, are presented and discussed.
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L'UTILISATION DIUME )MTODE BE CALCUL en r6gtime instationnaire pour la ditermination dium dooulament
stationnaire considdr4 comm limits anymptotique a dt6 frdquinment propoeda pour ridsoudre des
problbmas parti 'ulibresent difficiles tams quo celul du choo ddtachd (1-2-3-4].

4=ad Ia solution nuw4riqu. direct. du probl~ue stationnafre impose 1'emploi d'unea nthoda itdrative
(problksn elliptique), 11 W'est jamais certain a priori quo la convergence du prood plus ou moino
arbitrair. utiliad assure la. conv ren~c; si, au contraire, on introduit la variable tamps,
l'existonce de oarectdristiques rdelles dns 16 nouveau probiie permet de ddterminr ratiornellement
un oritbre de convergence ; celui-ci eat d'ailleurs assur4 automatiquent ni lcai utilise Uine
adthode de onlcul band. sur lea propridtds amen des caraotdristiquea.

La complication du problbme nWest dono qu'apparente :lea diversan it6rationn imposdes daes la
mdthode stationnaire sont alors remplacdes par l~a suite de calcula effectuds aux instants sucoessife

Dann I. can d16couiementn transsoniques, un autre avantage de Is mdthode iuistationnair. dee
caraotdristiques eat de pertnettre a priori de prdvofr directesent ltexinteno. dtondee do choo dams la
solution obarebde et, par oonsdquent, do choisir I& form. du profil pour dviter cat irioonydniont.

On pyut Imaginer un tr~s grand nombre do variantes dtapplioation de la mdthods ; citons lea suivanes
h titre d'exemple t

- partnnt d'un dooulement connu autour d'un profil doann (P), on modifie progressivemen-t (P) Jusqulk
Ia nouvelle forme (P'), la condition3 ( E00 ) h l'infini reatant invarianto..

- E00 restant fixe, on pout aussi. cheroher la nouvelle form. (P' )satisfaisant h wne distribution
diffdrente des pressions our le profil (problbme inverse).

- P) restant fixe, on part d'une solution connue pour (Eoo) et V'on pas.e progressivement do (Eca) k

L'objet de cet expos6 eat d'indiquer lea prinoipas at les premiers rdsultate obterus h 11O.N.E.R.A.
dans uno tentative do mise on oeuvre do co procd:

La mdthode adoptde s caractdriso essentiellement par l'utilisation d'un systua do coordonndes ( X, T
oonstitud h ohaque instant par lea lignes de courant ( Yf = ote) et leurs trajootoiros orthogonal..
( I cea ).

Ce choir a entre autros avantagos oelui de simplifier bosucoup 1e calcul numdrique 1d'uae part an
effet lea conditions aux lmites sont dorites toujours our des lignen X = ote on Y = ate du
rdseau;dtautre part, dans ces axes intrins~ques, lea dquations gdndralon conservent uno forme trbs
simple. Co choix soulbve D~ar omtrer comma on Ie verra, quelquea difficultds au voisinage des points
de v- teose nulle (bord d'attaque par example).

EXPOSE DE IA iXEmOrE DE CALMU

Aprbia avoir ddfini lea formules gdndralea de la mdthodo, on analysers lea probbma particuliers ponsa
par s rise en oeuvre.

FORMLATION CEFALE

On 4tudie un dcoulement do gaz parfait uniforme h 1'infini (poo , Voo, Too), pouvant comportor

6ventuollement dar., certains domainsa des variations d' entropie dues h 1'appar-ition d'ondos de choo.

SYSTME DE COORDON1E. Lea relations des caraotdritatiques sont rappeldes on annoe . Ces
relations sont partioulibrement simplos si on lea orprime dons des axes locaur x1, yi, t, Ii 6tant l.

veoteur unitaire port6 par Is vitesse locale h
l'instant t et 1,.l veoteur unitair. direotementt perpendioulaire, situ6 dans le plan physique (x, y).

LWangle R, i1 sera appeld 40.

Pour pouvoiLr utilisor lea relations des
caractdriatiquon sons cette fors simple, il eat
ndcossaire do ddtorminer uno transformation

16 biunivoque faisant correspoaxire h tout point du p~jAn
physique (x# y) un point du plan (1, Y) et telle quo

0an oedrirpanlslg do courant et lours

paralbles a=~ axes.



Soit dono (dz1, dy1) lea oeMposates d'un 414ent l ire an ian Point Q (z, Y, t) auivmnt IOe
directiouns 11 at y.

Poes

cS, et d tat duia foectiom amygwnablment ohoisi.. rendaut intdgrabale k chaqiz. instant t, le

(2) ObLL0CX+ 0 Y

at ot (3 atiefcgit dona ndoessaafroent h s

(,)(

D'aprta lea relatios (3), 0( at (3 aint~grmt au lo, form I

Lee distributions initial.s. c(X, 0, 0) t (.(n,',t) sont a priori arbitrafree.

33.y aint6rt hpoer t

0( A( ,/ Y

v (Y y t) 1

d'apr~e (3) ;eaneffet an a I

-JA

= Ty Txf. + :V'T -a

Ces 6qiatioma montrent qua oi l'4coulauent eat irrotationnel, condition assur4e ici, an lab3eno.

d'ondee do choo, on a :

A -A (X, t)

fonction arbitrairs, qi pormettra, dsdobolonmer convenablement dans le plan phyaiquo lea homologuee des
ignes I = ate (confondues alore avec des dquipotentiefloa).

On remarquerad'autre part quo i rot 0m ocn ala relation:

(6) ? v

ot reprAsente la courbure locales do la ligns do ourst dans le plan phyaiqua.

Cette relation ara utile pou l'dtudo dua voisinagv du point d'arxit*
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IEIATIOW DES CLUCMMJTXQTUFS. Dans lee axes (1, Y, t) priooddument ddfinim, la wfaoe
oaractdriatiqu., d'un point M (X, Y, t + dt) set un o&e. do somet N ooupant le plan t vaivant Una
ellipse do oentre il (~~~ An - - dont le demi-axeeprinipmamzot parllbloo k K t (
et ont respootivement pour msurs

A D a 6tant la odldritd dusmn.

De cette sfurface oaxat6ristiquo, on no rotiendra
par exemple quo lea quatre bioaraotdristiquoe

y passant par losameta A, B, C ot D do l'ollipse.

L Lo long do 006 bioam ot6riatiques, lee relations
suivantes sont v~rifi4es en g~n6ral ( y = )

4~(~ + (JXV Y- V - Lt
AM 0- AM

I(A.,) -M (av) - V

+M BL(L )M L L

I & Y(c.8) 1 .i L

D'autre part, l'ontropie satisfait h la relationt

(8) (0)

Si on 6tudie .1 16oulement isentropique d'un gaz parfait X- ote , lea relations so simplifiont an
posant P d. *Dufait doelisntropis

les relations (7) sl~orivent alors i

(& p)Am ± (V)AM (~IP V __ t

('LP)CM tv'o)) P - )v-4 ax
Om D

Pour simplifier l'oxpWa, on auppoaera par la suite quo l'dooulement oat offectivement isentropique
at quo lon pout utiliser ces dernibres relations.

ETUDE DE QUELQtUhS PROBLEJ4W PARTICULIW

Le mode do calcul dui point courant no pr6eento aucune difficultd thdorique, Par contre, ii. eat

ndoossafre do discuter quolquoa problbmes partiouliere.

Ca=U DU POINT COURANT Las trois grandeure P, V ot 0 ddfinissant l'dooulement au point courant
M (X, Y, t + dt) aeront ddtermindeo par l'applioation dos quatre relations oaratdristiquea (9)
nhoesaalrement oonpaqbles quo l'on pourra rdsoudrs par la m6thodo des moindreo oarr6s, On pout
dventuellement faire appol h d'autres bioaractdriatiquen.



4-4

POINT SUR 1Z PROFIL PROMM~ DIRECT'. 04 conviont do repr~seator le prof il mwr ia, cupu
0 (X < 1, ± 0du plan trinfcr1, T#Y X m 0oospondan au point darrtO0.

A tou pdoi 1 &0 d)cresodf pitaduioi ontl'abaiaae curviiii ccanptdo

X c (A(,±to, t +cLL) &)'.

I& distribution .±btrairo dC. (1, t 0, t) ayant 6t6 alnai choisis at le profil 6tant donrA k chaque
instant par la partition (X , t), langl 6 *,oat doneocan= on chaque point do la coupure
Y -. t0k condition do oaaro I. point dtarrt sur le profil. Lee doux autran grandeur. P .t V

caractdriuant l'dcoulament au point courant do In coupur. ou temps t + dt earont obtorns par is.
relationA (9)1 l lag des train bicaraotdriatiquoe Mi, MB et PD pour un point do Y w + 0.

Pour ian point do la, coupur. T - 0, ii faudre, conaiddrer let troia bicaraotgristiquea YA, MB at MC.

LUa douz fcnotima 0C, (X, ± 0, 0) potavent Stro choiales arbitrarement sous rdaerve do satiafaire aux

onditions do fexnature dui profit danx le plan phyaique.

Note, i Si i'abataole s d6formo, il West pan ligno do courant ; l'obatacle ddfini par affichage do
St) sur ia coupur. eat dono distinct do l'obstacle r6ol pendant Is pd6riodo do d~forination

A~& a) ; a*point et ana importance pour 10 problbwa 6tudid, car on W'est int~reesd par 10
profil axact quo loraque l'dcoulement permanent oat attoint.

Pt POINT SUR LE PROP11 : PRODIBME INVESE. On pout ausul so donner a priori ia distribution
(X , t ) sar la coupure 0 <X I 1, ie profil correspondant dtant k ddtonadner.

los troin bicarsctdristiquea uciliades au paragraph. pr~cdent sorviront alors au caicul do
O (x, t + dt) et Vj (X, t + dt) our cotta coupure.

AprAn int~6gration, il y aura lieu do vdrifier lee conditions do foniasture du profil correapondant
danm I* plan physiques

Simon, on devra poursuivre lo calcul er modifiant o(+ par example jusqu'h ce qu'lil en aoit sinsi.

POINT SUR IE SILLAGE. Si is probao eoat dissym6trique, l'axe Y =0 (X>~ 1) doit aussi 8tre
considdrd commo tans coupure (aillago) pendant ia
phase instationnaixe du calcul.

Pour ls caicul do dour pointa Q i nfiniment voisino
do part at d'autre do i'axe Y 0, on utiliaers lea
s ix bicaraotdrintiques QL+, QB4, QD+, Qk -, QB - t Q C7

ejon dorira .1a condition do con'patibilitd FP -,

8 On dcvra choisir cC. (X,Z± 0, t) do inanibra qu'on
tout point de la coupuro do aillago, on aitt

Dx 8'(A 
, ( 0
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oe ui ssu* l co~hoidence dana I0 plan p1~sique des points correspondant axm deur points C , la

condition do fermeturo ayant Wt prialablement satinfaite.

PONT D'ARRET. Au voisinago d'un point d'arr~t, on no pout calculer l'absuisee ciarwiligns
par int6gration do

car o( tend vozrs 11infini, comma_ au point d'arrt.

Mais dans son voiainap, on Muattra sane d6montration quo ltdoouleut pout atre oonsidiri em
Licompressible et irrotationnwl.

Son potential complexe oat alors do la forms

avoc +

?T - 1(

eo dtant 1angle de ddviation au point d'arr~t (pour un impact normal, Q0 IT et n =2).
2

Ayant pos4 0( - . 1 on trouvo ainsi qu'au voisinage AX dtun point d'arrt Io, on a
V

X, X., ( 0) A (x,) A Y
V (X0 A Y)

K CALMU DE P EN UN POINT D'ARRET. On a la relation

0=V + S(.4-) 2 -V U

en posant u- ( 1)p+ V

Dana le problbme symtrique, - ~ 0 au vcoisinago d'un point d'arT~t, done U eat atationairo
mwr le profil.T

On pourra done 6crdxo:

U. ~ ~ = LU (A ) + U(-AX)]

Dana un problbmo portant, le point d'arr~t pout varier au cours des itrationa, do sorts quo

b 0 On admettra n~anmoins quo le procddd prd5cddout reste applicable, pourvu quo cotte

variation soit trbs faiblo, hypothbae Ondralement W*rillide.

CALCUM t DE t ~ Dan tout domainseirrotationnel,o( eat dofndpar LA

A (X, t) dtant une fonction arbitrairo. VXT -

fl1 eat commode do se donner arbitrairement h chaque instant 04 (X, ;t o, t) et dWon ddduire par
itdration A (X, t) qui sort ennuite pour le calcul do o, dans tout le plan.

Dana les zones rotationnelles do l'dcoulement (en aval d'une ende do cho'n), Io procd6 prhocdoent W'est
paa valablo on doit alors opdror par calcul pas ZL pas do d, par l'dquation (4)1.

Au voisinago d'u:- point dfarr~t (X - Xo), 11intdgrnle eat rAgulibre, maia on pout remarquar quo ?L-t V
6tant nul, -;A 00 ce qui permet d'4crixe t

A (X0 ,AY, A~x, o, t)= -:L A (X-aot) A(YA,0,1



QLaat k N il sera obtems par l'lntgration (4)2

rans lo problhm. direct, 10 calcul do B (Xo± AX, 0, t) ai ngul Ier on X. c ota --*ooa r~eulte
imoddiatment do la relation (6), lIa courbure locale kc du profil 6tant donzie, at l UAW*doI
pouvant Stre obtomie par it6ration. 4

Dana le problbut inverse, kc dolt aussl Atro obtena par ithration.

IETECTION MS ONDES IE CHCC. Des ondes do choo peuvent apparaitre on caurs do calcul soit
paroi qu'ollee existent dens l'dcoulement permanent cherchd, soit pares que lee modifications doe
conditions aux linitee ont dtdf trop rapiden et ont provoqu6 la confluence d'ondes do compression.
31 y a done lieu do ddtecter lowr apparition, soit pour ralentfr lee modifications des conditions
auz lirnitee, soit pour tenir conpto do ces andea de ohoc par l'application des relations d'HTJGONIOT.

fl1 y a apparition d'une and. do ohoc entre los instants t et t + At si Ie point do contact d'une
* ~bioaraot~ristique quelconque avec son onvoloppe est aitud dama cot intorvallo do tem

Co oritbre dolt Stre appliqu6 on obaque point du r~seau et, on principo, pour toutes lea
bicaraotdriatiqueo.

Nous a' examinerons pas ioi Ua uthode do mamau h appliquar, dana 10 cas odi una ondo do choc dtant
apparue, on vent suivre son dvolution au cours du calcul : I. principe do Us mdthode & partir de
6quations d'HUGONIOT no prdsonto d'ailleurs auoune difficult6.

PR&TIQUE DU CLCU

RESEWU DE CALCUL

Connaissant l'dcoulement danm un plan (X, Y, t) on ddtermine, par lea relations des caractdrlatiquea
* et compte tenu des conditions aux linites, l'dcoulment dans 10 plan (X, Yp t + A t).

On choisit dana 1.. plans (X, Y, t ) un rdaeau h rAilies uniformcs ; dans Is cas dtun 6oorulement
isentropique, cot 6eaulement eat ddtermin6 par Is connaissance des grandeurs P. V et 9 on chaque noeud
de oo rdaeau. ; il faut 6galement connaltre lee valeure do of. ot N qui ddtonninent Us transformation.

Co maillago rdgulisr facilite lee interpolations at Us ddtermination des d6ri96ea ndoessairee aux
calouls. Le choix: des fonctions arbitrairos ddfinisaant ot et (N permet do jouor sur U& rdpartition
de points correapondants du plan physique (x, y) ; on peut en partioulior reserrer lea points au
voisinago du profil et aurtaut an voisinage des points d'arr~t.

Le rdseau diont ndcosaairemonrb born6, 11 oet impossible, d'afficher lea conditions Poop Vo, ot ov
firdes h l'infini : cotte difficult6 n'a requ encore aucune solution thdorique corrects. On pont,
salt utiliser un prolongoment ana3ltiqy. do P, V at ID obtonue au atado t pour calculer lea points
Q (t + A t) h U& frontibre, salt affichor sur cetto frontibre Us solution do l'dcoulement permanent
obtenue par une thdorio lindarla6o.

Afin do minimiser l'influence des orraura d'afficbsgo sur lea frontibres du rdooau on a, do toutes
fagons, intrt h reporter cellos-cl Io plus loin possible du profile

FXEMPS DE N2MD EN OEUVE DU CALGU

Deux exeamplos scat donnds pour illustrer la mdthode :un probl~ne aymtriqne ot un problns portent.

PRENIER EXEMU'IE ;PROBIE DUR=C SYNETRIQMF. On supposo quo l'on a ddtermin6 l'dcoulement h
l'instant t, co.rrespondant h un eartain profil ddfini par lIa fanctian yf(,\) exprimant, on fouction
do ltabscisso curviligne X cctsptde h partir du bord do fulte, l'angle Tdo Us tangents orientdo
avec isa r6fdrence fire Y
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A, l'inatant t + At ,on modlfie le profil, en 4crivant

(t:)+ A'U

Ccmisaant c((Y,., 0, t+AL) o n peat ddterminer x, et par suite X en tout point do la
ooupue T=O0, 0 (*X ( 1. On connalt doneo dtou les nouvele valeur d ur oett*
coupure.

L'utiliaation des relations des caractdriaujques entre lea plans X, Y, t et X. Y, t + A t permet
do determiner lea nouvellea vaeurs de P, V et 0 en chwae noeud dui r~aeau4

DElJXMMN EXEMPIZ t PROBIEMS DIRECT PORTAC. La forms du profil et dgaJleient donnde IL 1'instant
t par la loii(X

Soit X. i'abaoiaae

curvilign. du point d'srr~t

z A et ± l'angle d'incidenoe.

Sur lintradoe ot l'extradoa, on a respeotivement 
.

e-= T7- X) ~

A l'inztant t + At, on modifie Is position dui point d'arrt et, dventuellemunt, la, forms du profil

vt +At)= \Q(t) + A X

On d6termine alors, par application des relations des caractdristiques au voisinage du bord do Lute
F, Ia quantitd A ± dont il faut faire varier l'inoidence pour assurer la condition de JOUKEiMK au
point F (6galitd des preasions dlextradoe et d'intradoa).

Connaissant od, ( Y ,t 0, t + A 0) , on pout alors, comme prdoddezmment, ddterininer la rdpartition

do 0 (X , t t +tP 0ur la coupure.

Puis, on ddtermine lea nouvelles veleurs do P, V ot e en chaque noeud dui rdseau.

PRD13ER RESULTATS OB'1ENUS ET DISC1MSION

Un progranse a 4td derit stir UNIVAC 1108 dons le ows d'un problbm aymtriqus. Il utilis un rdaeau
cocaprenant au maximum 9 0 points en X et 3 0 en Y.

Avant do diacuter des premiors rdsultata obtenun, i eat ndaesaairg d'dtudier Ie cocaportemoat do
l'daoulaement au voisinage des points d'arr8t.

ETUDIE BE L'ECOULEINT AU VOISIMGE DIUN POIT DIARRET

On a ddmis qulau voisinage d'un point d'arrat, l'dcouloment pouvait Otro considdr4 oo incompres-
sible ot irrotationnol.

S'il s'agit d'un impact normal, lo potentiol eat celui do l'6coiilenont autour dtun corcie dont 1e
rayon R oat 6gal au rayon do oourbure du profil.
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On puton ddduir quswilaxe Y 0, la vitesse eat donae par s

(00)

Qmant aux durivdes V ot 19 alloa satisfont aux relationa

V LK 3~ fa '5) .)Y

W'angle e quo fait is veoteur vitesse avec haxe ox danm ie oas d'un probibme symtrique eat donn6
pars

(12) ZkLI

Si l'impact do ia. ligns do courant West pan normal, la. ici d'dvoiution. do la vitesse sur i'axe OX eat
'ft.

4  
A

0 3)
7T

e 0 tant l'angle do d~viation ou point d'arr~t.

STABILI'IE DE IA MMTOIC

Tin premier programs ayant A6d doent dana is can d'un problbme symtrique, on a chorchd L vdrifior
quo, partent d'un. dcoulemont permazent connu, cette solution no so ddgradait pan en cours do caloul.

On a choisi, h cot of Let, un dcoulement incompressible autcur d'un profil do JOUKOWMK.

lea premiere rdouitato ont At4 auvai a comeo on pout Is vofr sur la pianche 1 ou. la. courbe
roprdaente In ioi d'4voiution exacts do la vitesse our ce profil I lea croix reprdoentent ia
rdpoxtition do vitesoe obtenue spr~s 9 cycles do caicul.

,a d~gradation observde provient du fait quo lea grandeurs on ohaque pied des bicaraotdriatiquao
6talent obtenues par interpolation iindaire entre lea quatro points du rdaeau qui i'entouront. lea
forAulo (1o) montrent quo l'intorpoiation doit porter Bur ie oarrd do la vitesse. Do m&9 d'apr~s
ia fomualo (ii), on voit quo pour ddtorininer 'Wj) , il faut faire porter la. ddrivation. 6galoment
our is carr4 do la. vitooss ; pour 2-0 on derit, dana is voisinago imd~diat du point d'arrta

au can oZi la ddviaticn do In ligne do courant au point dWar t eat diffirento do M~(a 'nbn
do fuite sans point do robrounoonont), i'intorpoiation et In ddnivation, doivent porter our V I&

Moyeinant on pr~cautin, la solution no so ddgrado plus o~o on pout lo voir our In pianohe i &Li
lee points roprds5ontont lea rdoultats obtenza avo le nouveau prograzms apr~s dgaJlement 9 cycles do
Uaculn.
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TM is CALCUL

La d6termination do l'dcouleaent en ohaque point du rsoau eat relativement rapid*. Ea g6rral, oiq
it6ratiou successives sont suffis.atea pour obtenir la pr6oision maimale do Ia I achina ; oepeodant,
si lea points no sont pas suffisament serr~ dam lea rgions k fort gradient do vitoee, Is oaloul
peut no pan oconverge r; dane o8 oas, l'expdrience a montr6 quo 1. oalcul redevenait ooergm sit
pour ohaque nouvelle itdration, on prenait coe valour initiale des incomnia la acyenno entre la
valour initials et la valour finale de l'it6ration prgo6dente.

L'intervalle de temps At choisi doit Stre tel qu la trace dons le plan t du o do Maoh du point
M (X, T, t + At) soit comptie k l'intrieur du mailage entourant Is point (X, Y, t). Au voisinage
des zones h fort gradient do vitese ot il eat noessaire do resserrer fortement lea points, lea A t
impoeds par la condition prdoddente deviennont tr~s petits. Si dmai, par oocdit6, on adopts, pour
l'ensemble du rdseau un At unique o'eat-A-dire le At xinimal correspondant & 3A zone ct lee points
sont lea plus serr6a, un nocbre important do cycles do calcula deviont noessaire pour obtenir un
6ooulament pernanent. Le tepe do calculs s r6vblent alors prohibitifrs le oalcul do leoouleammt
autour dtun oerole h M - 0,4, effeotu6 dana oeo conditions mur UNIVAC 1108 a dft 6tre interrompu an
bout dtune demi-heure do oalcul, l'dtat penanent itant encore loin dttre atteint.

Dan un nouveau programme ean oours do mise au point, le rdseau de calcul eat aubdivis en un oertain
nombre do acua-rdsaux, dont la dimemlen doe aaillso eat adaptde aux gradients do viteese looaux
oetto solution perset do resserror lea points dana lea rdgions o4 oola at ndoeesaire, san trop
agprver 10 temps do oaloul total.

CONCLUSION

Les premiers emai d'applioation do la mthode propoede ont mcatrd qu'elle itait viable s 1e choix
du systim. do coordomdes X, Y facilite grandament la progpraatio St les diffioultsd rencotries
oant pu tre r6solues.

Cependant l'aotuel programe utilisant un pan At uniforme pour l'enemble du rdseau n'a pu doenr
do rdsultats probants, le temps do oalcul ndoessaire pour attindre l'dtat permanent dtant alore
probibitif,

Un noveau programs plus ilabcr4 eat en cours do mise au point i il doit ren le temps do calcul
)un0 valaur acceptable.
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I N N E X E

RIIATIONS 1!M CAR&CMMEITIQJ!S DANS LIPACE x, y, t

Oni umt quo lo c~ne oaractiristique, cii "cons do Mach" on un point Q quelcanqu. de hospice x, y' t
oat difixl do I& fagom sutnt i

A C

T

Soit, mw? Is plan t - dt, q la pro~ection do Q, ;I at ]en ae locaux peaillbes at perpendiculaires
I V portonA mu? xl un vrectour q It. - - V dt et treagons dans 16 plan (t - dk) un ceod. de centre SL.

etado royan .at (a vito... du am): on caol* oat la trao. dui ofto do Mach an Q. Soient A, B, Coat D
lee extrdmitim do@ diau~tres do on carols respectiv'.ont parallbios h il ot yp

Una g~idratrioe qpoloonque Q X oat bicaractiristique. Salt w flx CE LM) I& dirivation
ouivant la direction Q X s'drit i

Par uno combinaison lin6aire dos 6quations do quantit6 do mouvomont ot do I'dquation do oontinuit6,
on pout obtenir la relation des caraotiriatiques

t D t QM Dt qm Dt QM -

(15) VV + ~ V4LW)

N Tf itant la tamgonto on X k I&a trace dui obne do Mach dui plan (t - at).

Cott* rehAtion q(l ne comports quo des dirivations salon des directions omUpriss dama le plan tangent
aui aoz do Mach montre bion quo colui-ci oat surfaoc octdriatique.

Si 114coulament nWest pas isontropique, il y a lieu do toxnir copto do la bicaractdriatique
partiouuibre CL Q, le long do laqualle l.'sntropie ot constant.

Si l'on no slint~reaao qutaux queavr bicaract~ristiqaes 4~k, QB, QC ot QD, la relation (15) pormet
d'6orir* :

D± ( +V(DO) ~ - _ 'b
Da tL
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SUMM

Guidelines for the efficient formulation of time dependent transonic flow
calculations are presented. Among the particular points considered are procedures
for satisfying boundary conditions et solid boundaries and ensuring well posed
problems for flows that are subsonic in the far field. A discussion of the
relative merits of the Lax-Wendroff technique and an explicit method of treating
imbedded shocks is also included. To Illustrate the points made, the results
of several calculations are presented and discussed. These include:

1) The subsonic and supersonic flow about a 6% thick biconvex airfoil
iu a duct;

2) The flow in a converging-diverging nozzle with supersonic exit
conditions;

3) The subsonic flow about a circular cylinder in an infinite stream.

The details of the various finite difference techniques used in these
calculations are also presented.
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TIME DEPENDEiT CALCULATION OF THE COMPRESSIBLE

FLOW ABOUT AIRFOILS

D. Mac Kenzie* and G. Moretti**

Grumman Aircraft Engineering Corporation

Bethpage, N. Y., U. S. A.

I. INTRODUCTION

The present generation of computers is better-suited to the solution of initial-value problems
than to the solution of boundary-value problems. Unsteady flow problems belong to the first
category. Steady flows containing subsonic regions canbe analyzed, in principle, by solving
initial-value problems with the steady state calculated as the unique asymptotic limit of an
unsteady flow process starting from an arbitrary distribution of initial values and subject to
steady boundary conditions.

A wide variety of transonic flows of practical interest can be generally divided into two
categories depending on the nature of the flow at the non-rigid boundaries which enclose the region
of interest:

1) Flows which are supersonic in the far field and contain one or more subsonic islands;
2 Flows which are subsonic in the far field and contain one or more supersonic islands.

The most popular example of the first category (and probably the simplest) is the fl(-r past a
blunt body in supersonic flight. It has been proven that time-dependent techniques are extremely
well-suited to the analysis of the blunt-body problem, and definitively good results from the view-
point of both accuracy and computational speed have been obtained (ref. 1).

The problems of the second category are much more difficult than those of the first, primarily
for the following reasons:

1) The flow field may contain imbedded shocks generated by a coalescence of characteristics
in a region of supersonic flow;

2) The flow on at least part of the computational boundaries is subsonic so that the location
and the specification of the data on these boundaries may affect the numerical results.
Typical problems of this kind are the choked flow in a converging-diverging nozzle and
the transonic flow past an airfoil flying at supercritical speeds.

We wish to present some guidelines which we have followed in our research and whose effects
are discussed in the present applications.

1. Our aim is to provide computational progrems which can be used for practical applications.
One of the basic requirements is a high computational speed and this in turn depends primarily on
the use of rather coarse meshes. Therefore, it is imperative to use integration techniques for
interior points which are accurate to second order. If there are no shocks in the flow, both the
Lax-Wendroff conservation technique (ref. 2) and the similar, 'ut simpler, non-conservation technique
used by Moretti in the blunt-body problem (ref. 1) work equally well. The advantage of the latter
with respect to the former is twofold: namely, it is not necessary to recast the equations of
motion in conservation form so that the algebraic manipulations are simpler and more straightforward,
and the computational time is shorter by a factor of 2, at least.

2. If shocks are imbedded in the flow, the Lax-Wendroff technique, in principle, leads to a
steady pattern where shocks are replaced by abrupt, but continuous, transitions spread over several
mesh intervals. The Lax-Wendroff technique has been used in this paper for the calculation of
flows containing imbedded shocks. This technique, however, suffers from the following limitations:

(I) The mesh must be relatively fine in the neighborhood of the shock since the computed
shock thickness varies directly with mesh size)

(ii) The physical parameters near the shock show a .avy pattern reminiscent of truncated
Fourier expansions in tbir vicinity of a discontinuity.

The incorporation of an explicit shock representation into the simpler interior point technique
would eliminate these shortcomings and increase both resolution and calculation speed. However,
as discussed in section IV, a balance must be struck between these desirable objectives and
several additional considerations. Some elementary examples of the explicit shock technique
have already been worked out successfully by Moretti (refs. 4 and 5).

3. The boundary conditions at all rigid walls should be imposed using a modified method of
characteristics (ref. 3). This is crucial to insure over-all accuracy. Figure I shows how well
the steady pressure distribution obtained from a two-dimensional time-dependent calculation agrees
with the Prandtl-Meyer Jistribution along a wall with a 150 expansion corner. In this case a
second-order non-conservation integration technique has been used at all points except on the wall

* Advanced Development Engineer, GAEC
*+ Consultant, and Professor, Polytechnic Institute of Brooklyn
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where a modified method of characteristics has been used.

4. If the computational region does not extend to infinity and the flow on its non-rigid
boundaries is subsonic, it is physically impossible to prescribe proper conditions on these
boundaries since all signals from the interior region (computed) affect the exterior region (not
computed) and vice versa. Consequently, all physical parameters on these boundaries should be
allowed to change with time but there is no way of knowing a priori how these changes should occur.
While it is true that the flow at some distance from an airfoil or any other obstacle is only
slightly perturbed, all artificial limitations on non-rigid boundaries of a computational region
will trap out-going waves to some extent. As the computation proceeds in time, these artifically
created standing waves may eventualy accumulate and cause the calculation to become unstable. In
order to provide the computation with a physically well-posed set of boundary conditions: one
should extend the computational region to infinity. This goal is achieved by mapping the infinite
region surrounding the obstacle onto a fiuite region where the computation is performed.

The authors are indebted to R. C. Meyer of Grumman whose encouragement and suggestions have
significantly aided in the development of the various numerical procedures used in this paper.

II. NOTATION

a nondimensionalized speed of sound
- - - matrices Bf/aw, bg/aw, respectively

alb cd e defined in equation (14)
b(x),h(x) functions defining airfoil and duct wall, respectia ly

pressure coefficient = (p2pa)/*p 8,V 2

E total energy = ly-) P/P + i (u2 + v2)
FG functional represendation of coordinate transformations
H total enthalpy = E + p/p
iJ X and Y node point counters in the computation space
kl, k2 .... constants appearing in coordinate transformations

bm'n Xx ,Y .Yy respectively

M Mach number
p nondimensionalized pressure
P log p
rO e1t polar coordinate system
R logP
bX nondimensionalized velocity components in x~yt coordinate system
*Uv nondimensionalized velocity components in t,%T coordinate system

nondimensionalized velocity vector

VB nondimensionalized velocity at a surface node point
v'fsg vectors used in the conservation formulation
x'y't coordinates in physical space
X:YT coordinates in computational space
Y isentropic exponent
hXAYAT mesh spacing in the computational space
AT AT
CA'r physical coordinates used for characteristics method

*, unit vectors in the CIq directions

p nondimensionalized density

Subscripts: Subscripting a variable with any of the coordinates indicates partial differentiation
while the indices iJ indicates the node point. Thus w indicates the second

time derivative of w in the computational space at X =iA'X, Y = JAY

III. ANALYSIS

Several different forms of the equations of motion are used in the calculations described in
this paper, depending on the nature of the flow expected, and/or whether or not a solid boundary
is involved. In general, solid boundary points are calculated using a modified method of character-
istics. Interior (non-boundary) points in shock-free flows are calculated using finite difference
analogues of the usual partial differential equations of motion. For flows containing imbedded
shocks, finite difference analogues of the equations of motion I.,, conservation form are used for
the interior point calculations.

A) Interior Points for Flows with Shocks

The nondimensionalized equations of motion in a cartesian frame can readily be regrouped

into what is commonly referred to as conservation form as follows:

(W~t + (Pu)x + (P\)y = 0
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(pu)t* (pu2  + (puv) =0

(Pv) t + (Pvu) x + (PV2 + p)y -= 0 Wz

(pE)t + (puH)x + (pvH)y = 0

where for a perfect gas,

H = E + P/P = y/(y-1) P/P+ i (u 2 + v 2 ) (2)

For simplicity in subsequent manipulationsj the following vector notation is introduced,

p Pu pv
, f = U+P g = (3)
Jp f 2pV PUV pV + P

pE puH pVH

so that the equations of motion in conservation form can be rewritten as

+ fx+ v = 0 (4)

An auxiliary computational space is defined by the transformation

T =t

X = F(x) (5)

Y = G (x,y)

The specific forms of the functions F and G depend on the problem to be calculated and are thus
deferred until the next section of this paper. In the computational space, the system of equations
(4) becomes

where wT + AfX + mfy + ngy 0 (6)
= Xx m =Yx and n =Yy

It is noted that the transformation scale factors Imn are not incorporated into the X and Y
derivatives to yield "conservation -quations" in the computational space. It is conjectured that
conservation form should be maintained in the physical space rather than in the computational space
for calculating shocked flows without explicit shock handling. Following the procedure originated
by Lax and Wendroff (ref. 2) the vector w is expanded as a trucated Taylor series in time,

w(T+AT) = w(T) + wTAT+wTT -w. +...... (7)

In equation (7), the vector wT is immediately available from Equation (6), namely

'T (t fY+n (8)

Assuming the interchangeability of the order of differentiation the second derivative of w with
respect to T is given by

wTT - -[I(AwT)X + m(AwT)Y + n(BwT)Y ]  (9)

where A and B are the matrices af/bw and ag/aw, respectively. Thus both wT and wTT in the Taylor

series are expressible in terms of space derivatives of the vectors f and g.

To obtain the finite difference analogues of these space derivatives, the following conventions
are employed:

1) In the evaluation of wT, the X and Y derivatives are represented by central differences of
form

Pi+ij - 'Pi-l,l ' ij+l - 'ij-, (10)

-PX 2AX 2AY

where (PiJ = CP(iAXW, JAY)

2) To evaluate the term w , considering a typical term, (AWT)X, we set

(AwT)x + [Ai4j,j wTi,j-Ai.,j wTi.+J/AX (11)

where

A 1.J, = (Ai+l,j + A+,j )

IfX
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with similar expressions for A and w,, _ . Then the derivatives of f and g are represented by

fx (ilj " fi, j)/bx

f (f ..~jl f .. f )/4
fyi+j , i+l,j-l + ij+l ,- )/ 4 Y

( : 31 - gi+l,j-1+ gi,j+l" gi,j-1 )/lAY

with similar expressions at the point i -,j.

This finite difference representation is then used to update the vector w at the interior
points of flows in which shocks are expected. This does not of course preclude its use for
continuous flows, but more efficient procedures are available for this purpose as discussed below.

B) Interior Points for Continuous Flows

For continuous flows, the conservation form of the equations of motion are not required so
that the system to be considered, in the same cartesian frame, is given by

ot - (u + ul + vy + V)
ut =-- (ux + %Vy + PiP P) (12)

vt = - (uv + vvy + p/p )
y y

where for irrotational flows the energy equation is given by

P = 0yRand P =logp, R = log p (13)
This set of differential equations Is again transformed into the computational space defined above
so that the system becomes

+ - ~y + IuX 4 muy + nvy)

UT ~=(;a ux4S + E~P + by (14)
vT~~(av 4S +~vT (ivx + tvy + ;P)

where a = u, S = mu + nv, = pp, = mp/p, e = np/p and Lm,n are as previously defined.
Again each of the variables R,ujv are expanded as a truncated Taylor Series in time of the form

( + T ) -R(T) + R A + PI -r +  • •( 15 0)

with similar expressions for u and v. The first derivatives, RT UT, vT are given in terms of space

derivatives by the original system of equations. To determine the second derivatives P, UTT, vm
we first determine the quantities RTX, uTX, vTX and Vy , u Tn, vTY which are expressible-in terms of

second space derivatives of u, v and P (or R) and first space derivatives of quantities a, S, ;, a
e, t, m, n. Then, again assuming interchangeability of the order of differentiation, the terms
IT, UTT, vT are determined. They can ultimately be expressed in terms of first and second space

derivatives of u, v and P (or 0 and first space derivatives of the quantities A, m, n which are
known functions.

At this point, the following central difference formulae are used to represent the first and
second space derivatives of the flow variables,

x= (Pi+l,3 - ci-l,)/2M  9 = (Yij+l - i,-i )/2AY

TCC = (,i+l,3 " i,3 + cp 1 , )/AXp , = ( ,j+l - 2i, 3 + 2

and (i+l,3+l " i-l,3l "i+lJ-. +

This finite difference procedure has been found to be faster than the conservation scheme described
previously in those flows where both are applicable. The non-conservation formulation will not
work in the case of shocked flows unless explicit shock handling is $ncorporated and the flow-
rotationality is accounted for.

C. Characteristics Technique for Solid Boundaries

It has been the experience of the authors that the use of reflection techniques and/or
non-centered difference techniques t evaluate the flow on arbitrary curved solid boundaries either
do not work or are highly inaccurate. Thus in these calculations the solid boundary points are
calculated using a technique developed and used with considerable success by Moretti (ref. 3).
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This technique determines the flow variables on solid boundaries using a quasi-one-dimensional
unsteady characteristic formulation. The basic premise is that wall points are sensitive Minly to
signals originating inside the flow and propagating towrd the wall at a speed equal to the asm of
the sound speed and the flow velocity normal to the wall. Flow distortions due to the two-dimen-
sionality of the flow are treated aF forcing functions to the quasi-one-dimensioxnJ formulation as
discussed below.

At each wall node point, a cartesian frame translating at the local streamwise velocity is
defined normal to and parallel with the solid boundary as is indicated in figure 2. In this frame,

the equations governing an irrotational flow can be written

R + 4
u + uu + p/Pi - u (1 7)

S+ ~ .- p/pP =0

where

= ', - VB yR = P

It is noted that in the continuity and the t-momentum equation terms containing J-derivatives
are collected on the right hand side and will be considered as constants at each stage of an
iterative procedure used to determine the characteristics solution.

The characteristics directions of the first two of equations (17) can readily be shown to be

SI a a = (18)d 't

where for the coordinate system defined in figure 2 the + sign represents a characteristic running
from within the flow to the wall, and the - sign a characteristic originating within the solid
boundary. The compatibility equation along the (Z + a) characteristic is given by

-R + !!E - =- +~ 41V + (19)
dT a dT =  a

At a particular time step, the (Z + a) characteristic passing through the wall node point is
projected back in time to the previous time step, intersecting the physical plane at the point (*)
indicated in figure 2. The corresponding point in the computational plane is then determined and
the flow variables and their XY and eventuallyj, T derivatives are determined by interpolation
and finite difference procedures. Then, since u at the wall is identically 0, the compatibility
relation is sufficient to determine an estimate of R at the wall . The reduced tangentail velocity
is calculated using

+ A)= VT) - +P/p P I d(

where we use the fact that Z is 0 at the wall. This constitutes the first step in the iterative
procedure. A new characteristic is defined by

= 1w + ( +a)*(

and the process is repeated until convergence is achieved.

This procedure is used in conjunction with the non-conservation formulation described above
for the calculation of shock-free flows. A slightly more complicated version of the characteristics
procedure is used with the conservation formulation for flows where imbedded shocks may appear.

IV. CALCULATIONS AND RESULTS

Several different programs have been developed using the finite difference schemes described
above to attack the various aspects of the transonic airfoil problem. The specifics of these
programs and the results obtained to date are discussed below.

A) Biconvex Airfoil in a Constant Area Duct

Several calculations have been made for the subsonic, and supersonic flow about a 6%
biconvex circular are airfoil aligned with the centerline of a constant area duct. Each of the
ca:.culations were made using the conservation formulation for the interior point evaluation and
the characteristics procedure on the airfoil surface. The tangency condition on the duct wall was
imposed using the reflection technique. For the subsonic calculations, uniform horizontal flow has
been specified at x = E-.

The infinitely long duct implied above is reduced to a finite rectangular computing grid using
the following stretching and normalization of the streamwise and transverbe coordinates.

X =k. tanh (k) (2
i (22)
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hT -hT x)

where b(x) is the ordinate of the duct centerline and airfoil and h(x) describes the shape of the
duct wall, here a constant. For the supersonic calculation the stretching* of the streamwise
coordinate is not required so that

x = x (23)
and uniform supersonic flow and constant streamwise derivatives of the flow variables were specified
Schord upstream and downstream of the airfoil, respectively.

The centerline &nd surface pressure distributions forfreestream Mach numbers of 0.6, 0.7 and
0.8 are presented in figures 3, 5 and 6. In each case the flow is subcritical so that the afore-
mentioned longitudinal mapping together with the specification of uniform flow at the upstream
and downstream boundaries defines a well posed problem. For each of the three freestream Mach
numbers an independent theoretical estimate, consisting of a Spreiter Mach correction to the
linearized compressible flow prediction for an airfoil in a duct, is superimposed for comparison
purposes.

Surface pressure distributions obtained from the time dependent computer program correlate
well with these approximate analytic predictions. T1ke influence of surface slope discontinuties
at the airfoil leading and trailing edges is seen to cause some local oscillation in the surface
pressure, particularly at the lower Mach number. Efforts are being made to minimize tis effect.
A typical time history of the surface pressure at the mid-chord station is also presented for the
M = 0.6 case in figure 4, which indicates the nature of the decay to te asymptotic steady state
flow.

The surface pressure distribution obtained at a freestream Mach number of 2.0 is presented in
figure 7. A characteristics solution for the same configuration is also shown for comparison.
Over the major portion of the airfoil surface the pressure distributions are seen to agree quite
well. The chordwise range of good correlation has been observed to improve consistently with mesh
refinement. The leading edge precompression and subsequent over-compression effect is inherent in
the implicit shock representation employed. A similar comment applies at the trailing edge. A
Mach profile at the mid-chord station is included in figure 8, which graphically illustrates the
shock representation obtained using the conservation formulation. Greater resolution can be
achieved by mesh refinement which implies greater computer times. The decision to switch to an
explicit shock representation to obtain further increases in resolution must be carefully weighed
against several considerations:

1) Explicit shock representation requires a significant increase in program sophistication;
2) More importantly, it requires a pre-knowledge of the basic shock structure that will develop.

Two approaches have been used in our efforts to obtain supercritical results for the biconvex
airfoil. In both cases, successful calculations have not been achieved to date.j ~The first approach consisted of increasing the Mach number at the upstream and downstream
boundaries of the constant area duct. This specification is not rigorous in the supercritical
range but is a reasonable approximation in an exploratory investigation of this -type. The super-
critical calculations showed an initial tendency toward the expected results, but later on in the
computation, certain unresolved disturbances developed, which after reinforcement by reflections at
the various boundaries, eventually cause the calculation to go unstable. Efforts to resolve this
problem are currently in progress.

As noted above, the specification of uniform flow conditions at x = is not precisely correct
at supercritical Mach numbers. The flow far upstream may still be specified to be uniform, but,
because of losses generated by the airfoil shock system, the correct boundary condition far down-
stream cannot be specified a priori other than to note that it is a constant pressure subsonic shear
flow. This indeterminacy of the exit 3tation flow and its effect on the flow past the airfoil can
be removed by introducing a second throat duct configuration as indicated in figure 9. In this way
the exit flow is forced to be supersonic and no exit-feedback to the airfoil can occur. The
simultaneous introduction of a bell-mouth entry section leading from an infinite reservoir to the
constant area test section containing the airfoil constitutes a well posed physical problem. The
net result in essence is to create the computational equivalent of a closed throat transonic wind
tunnel circuit containing an airfoil model in a parallel walled test section.

Calculations for this airfoil-tunnel configuration at supercritical speeds have been attempted
with unsatisfactory results. The problem has been traced to an injudicious choice of inlet geometry
which produced disturbances that propagated into the test section and obliterated an otherwise orderly
developing supercritical flow. These calculations will be continued in the near future.

B) Nozzle Calculations with a Supersonic Exit

A two-dimensional converging-diverging nozzle affords a natural testing ground for the

• The stretching of the streamwise coordinate to permit the specification of boundary conditions at
infinity was originally suggested by Dr. R. Melnick of the Grumman Research Department
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finite difference techniques that are being considered. The nozzle geometry employed is shown in
figure 10. Again, the streamwise and transverse coordinates are stretched and normalized as in the
previous set of airfoil calculations, except that here

b(x) = 0

h(x) = -1 + 3.34 + .66 x2  (24)

In the physical plane, the upstream boundary is located at x = - in a reservoir where stagnation
conditions are specified. For this purely expansive calculation, the nozzle is truncated somewhat
aft of the throat and constancy of the streamwise derivatives constitutes the downstream boundary
condition.

The calculations were made using both the non-conservation formulation and the conservation
formulation for the interior point evaluations. The centerline and wall pressure distributions
obtained using the two techniques are shown in figure 10, with the conservation results shown on
the right. The results of the two calculations are practically indistinguishable and straddle the
one-dimensional prediction as waild be expected.

1Results for the same nozzle configuration with a subsonic (shocked) exit condition usirg the
conservation formulation are planned for the near future.

C) Subsonic Flow About a Circular Cylinder

In order to develop the technology required for handling real airfoil shapes, consideration
must be given to rounded leading edges. The program and calculations described in this section we

made to evaluate schemes for treating simplified shapes with stagnation points in an infinite subsonic
domain. A circular cylinder of unit radius has been chosen for simplicity. The non-conservation
formulation was used for the interior point evaluations. The system of equations in the physical
plane were in polar coordinates but the philosophy of the development of the finite difference equa-
tions parallels that indicated for the cartesian frame in section II-B. The transformation used to
relate the computational and physical planes is given by

(25)
Y tanh k3 (r-l)

as indicated schematically in figure0 ll. The computed velocities along the forward and rear
stagnation streamlines, along the 90 ray and along the surface are presented in figures 11 and 12.
Since the flow Mach number is .1, the results are correlated with incompressible predictions. The
agreement between the two is seen to be excellent for the forward stagnation streamline and to
diminish somewhat as we procede around the body to the rear stagnation streamline. The excellent
correlation in the forward regions of the flow leads us to expect similar results when this technique
is applied to rounded leading edge airfoils.

V. FUTURE RESEARCH

Several short term efforts are currently in progress, some of which were indicated in the
previous section. These include calculations for:

1) Supercritical biconvex airfoil in both t" onstant area duct and the transonic tunnel;
2 Shocked two-dimensional nozzles;
3) Subsonic Joukowski section in an ii .ce stream;
4 Supercritical circular cylinder in an infinite stream using the explicit shock formulation.

These short term goals are part of what we consider to be an orderly development of those
elements required for the calculation of the supercritical flow about lifting airfoils toward which
this research is directed.

As demonstrated in the literature, the time dependent finite difference technique has proven to
be a versatile tool for calculating the transonic flow about blunt bodies at supersonic velocities.
It was this success which motivated the present application to the equally challenging problem of
transonic flow about airfoils. The encouraging results achieved to date tend to Justify its use in
this application.
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SUMMARY

A method recently developed by Northrop consists of a computer program which will deter-
mine an airfoil shape from predetermined supercritical velocity distributions having extensive
regions of supersonic flow. The velocity is given versus the distance around the airfoil. This
allows a designer to design to a given lift by specifying the required circulation. Also, bound-
ary layer problems can be avoided by restriciing adverse velocity gradients.

Starting with a given compressible pressure or velocity distribution with mixed subsonic and
supersonic regions an airfoil shape can be determined. This is done by making a transformation
that causes the streamline and potential line network to give an equivalent incompressible flow.
This incompressible problem is then solved by complex function theory and the solution is trans-
formed back to the compressible plane. A computer program using this method has been applied
to several shapes with known solutions. The results indicate that this method is a useful tool for
studying supercritical transonic airfoil shapes.

I
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SUPERCRITICAL TRANSONIC AIRFOIL DESIGN
FROM PRESCRIBED VELOCITY

DISTRIBUTION

M.S. Cahn, H.R. Wasson, and J.R. Garcia

NORTHROP CORPORATION, NORAIR DIVISION

£! INTRODUCTION

Supercritical transonic airfoil design requires the solution of flows with mixed supersonic
and subsonic speeds. The solution to the problem has proved to be extremely difficult. The usual
approach has been to make approximate corrections to the incompressible flow solutions about a
given shape. Bectuse of the sensitivity to small variations in airfoil shape this method has not
been wholly satisfactory, especially at supercritical speeds.

Almost complete reliance on wind tunnel testing has been necessary to get good determina-
tion of airfoil characteristics. With a combination of wind tunnel testing and subsequent modifi-
cation of configuration, designers have had some success in obtaining satisfactory design.

It has now been determined that many of the problems of obtaining a satisfactory supercriti-
cal wing design can be solved by first starting with a prescribed velocity distribution in the physi-
cal plane. This allows the designer to approach more directly the desired airfoil characteristics.
Also, and perhaps more important, this leads to a relatively simple solution to the difficult prob-
lem of mixed flows with supercritical velocities. This new method will be demonstrated in this
paper.

SYMBOLS

V - local velocity s - distance along streamline

V. - free stream velocity n - distance normal to stream line

q5 - velocity potential Z - complex coordinate in compressible plane

- stream function Z' - complex coordinate in incompressible plane

p - density 0 - angle in circle plane
Poo - free stream density a - local flow angle in airfoil plane

S- complex coordinate in circle plane

OUTLINE OF THEORY

Assume that

versus S and free stream Mach number are given.

f vds can be obtained from a simple integration.

Since SA = P aq5 - lines and V1- lines form an orthogonal network of rectangles.
as P On'

The length-width ratio of these rectangles are proportional to the local density (p) The equiva-
lent incompressible flow has 0 and ip lines orthogonal and the network forms squares. The com-
pressible flow field can then be transformed to an equivalent incompressible flow by substituting
s' for s where ds' = f(P) ds. The transformation is discussed in NACA Report No. 789 (1944) by
I.E. Garrick and C. Kaplan. Now 4, versus s' is known for the equivalent incompressible flow.

*Mr. Cahn, Mr. Wasson and Mr. Garcia -, Research Engineers in the Aerodynamics Group.

1 Shapiro, Ascher H., The Dynamics and Thermodynamics of Compressible Fluid Flow, Pg 296
(Ronald Press, 1953)
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Consider now the transformation of the airfoil into a circle by the equation Z' = f ( ) where
Z' represents the Incompressible airfoil plane and J represents the circle plane. It can be shown
that

dZ' Ids'n =In I (a-o-ir/2)

From versus s' and knowing 0 versus 0 for the flow about a circle, s' versus o, ds' and

In can be determined. Since In Is the real part of an analytic function the imagin-

ary part can be found from its Fourier series representation. The imaginary part allows deter-
mination of a, the local surface slope of the airfoil, and from s' and a the incompressible shape
can be plotted. The equivalent compressible shape comes from a retransformation by again sub-

stituting ds for 1 I da'.

COMPARISONS WITH EXISTING DATA

The method described above for supercritical airfoil design has been programmed for IBM
360/65 system In basic Fortran IV. The program is relatively simple to use and takes only
approximately two minutes of computing machine time to run one case.

In order to shed more light on the program's performance, a circular arc profile was com-
puted. The velocity distribution data for this shape comes from NACA report 1217. The results
for a circular arc section are shown in Figure 1. The shape of the section for a Mach Number
range from 0.6 to 0.87 shows very little change. This indicates that the compressibility effect is
well accounted for.

Once the condition for airfoil closure was established the problem consisted of refining the
numerical procedure until there was sufficient accuracy at all points of the airfoil.

The accuracy of the program for supercritical flows is shown in Figure 2, where the re-
sults of calculations for an NACA 0012 section at 0.75 Mach Number are given. The input data
are relaxation computations from NACA TN 1746. The results indicate that the method is feasible
and can give good results. A comparison with supercritical experimental data for a NACA 0012
airfoil (Figure 3) shows the computed shape to grow thicker toward the trailing edge. This is
believed due to the boundary layer displacement thickness on the actual experimental airfoil. It
should be noted that supercrltical flow exists on the NACA 0012 airfoil at the Mach Number tested.
The local Mach Number is above 1 from 10 to 30 percent chord and reaches a peak of approxi-
mately 1.1.

The program has been applied to other supercritical transonic airfoils with more extensive
supersonic velocities and the results indicate similar accuracy to that obtained for the NACA
0012. Among these airfoils were asymmetrical and lifting configurations.

APPLICATION TO TRANSONIC AIRFOIL DESIGN

The program described herein is being used by Northrop for the design of transonic air-
foils. Three examples are shown In Figures 4 through 9 along with the hodograph plots for these
airfoils. The airfoils are designated by a letter and numbers. The letter indicates a specific
series. The first two numbers indicate the design Mach Number in 100ths. The next two numbers
indicate the design lift coefficient in 100ths and the last three numbers indicate the airfoil thick-
ness in 1000ths of the chord. All of the data shown are at the design conditions.

Airfoil G8027-120 has an extensive region of supersonic flow. The hodograph plot indicates
that there is no tangency of the boundary streamline with a characteristic line.

Airfoil G-8022-088 has a smaller region of supersonic flow and the lower surface is made
to have free stream velocities over most of its distance.

Airfoil G-8040-076 has a similar upper surface distribution to G-8022-088 but the lower
surface velocities were adjusted to give a higher lift.

Further analysis on these and other shapes are planned at Northrop. The analysis will in-
clude boundary layer stability calculations.
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CONCLUSIONS

Results of calculations of airfoil shapes from supercritical compressible velocity distribu-
tions indicate that it is feasible to calculate the shapes with reasonable accuracy using a trans-
formation to an incompressible plane, and that the method car. be useful for studying transonic
airfoil shapes with supercritical velocities.

The program described herein can be used to assist in the design of improved transonic
airfoils. The effect of velocity distribution changes on airfoil shapes can be studied at transonic
speeds. Higher drag rise Mach numbers may be obtained by designing to avoid limit lines using
the hodograph representation.*

A

*Cahn, M.S., Journal of Aircraft, May-June 1967 (AIAA).
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SONU1ARE

Une n~thode de calail analogique , bas6e stir l'ei~loi des diff~renccs finies est appliqu~e
A la d6tcrmination d' 6coulernents transsoniques A partir de leurs hodographes. Apr~s tine
brbve description des Mnthodes soit analogiques, soit hybridos applicables en ce dcwaine
il est insist6 stir l'6tude des profils.

Suir ce sujet il est cons id6r6 sticcessivemnent le cas des profils syintriques, le cas des
profils A l'incidence de portance nulle et, le cas des profils partants. Des exenqples et
com raisons sont fournis qui soulignent les possibilit6s de la rn~thode. Enf in tin alga-
rithn de calcul, est propose pour d~terminer, selon tine technique hybride, tin 6coulement
conprenant tine onde de choc.

Par ailleirs; ce proc~di4 est applicable aui calcul de grilles d'aubes et diff~rentes possi-
bilit~s et exenpies seront fournis.



EQUATIONS A RJ3SOUDR13.

On considre 1 16coulement plan, permanent et irrotationnel d'Ln fluide compressible. Les grandeurs
repr6sentatives : Ile module de la vitesse, P l~a masse sp~cifique, p la pression, 4f le poten-
tiel des vitesses, yp la fonction de courant sont rapport~es A leurs valeurs; critiques,

En introduisant. les variables caneniques 0 et w' d~finies par:

9:angle de l~a vitesse r IL 5 II

les fonctions efet J1satisfont au syst~me conjugu6

En particulier ty(Q,q ) est solution de l'6quation du second ordre, 1in~aire et de type mixte

(rL) w ~ I -t (1)
ou (Ir - M') est tine fonction qui par 11 internkdiaire de l~a relation de ST Venant
refl~te l~a loi de coiipressibilit6 du fluide. Cette fonction vanie en signe conmme ;r et selon
qu'elle est positive, nulle ou negative, 1'&quation (1) pr~sentera le type elliptique, parabolique
oti hyperbolique ce qui correspond respectivement ai um 6couloment subsonique, sonique ou superso-
nique. Pr~cisons qu'un point d'arr~t 9e correspond at Cr= eo et quo i'axe a-. est l'image
de la ligne sonique.

Dans le demi-plan Cr4. 0 le type hyperbolique Cl) isiplique l1'existence de caractdristiques donn~es
sous forme diff~rentielle par : d0

et stir lesquelles la d6pendance des coordonn6es permet de relier les fonctions; Ct et yf par

AV t+ 4  t d 1- (2)

Enfin l~a correspondance entre los deux plans ).,y et 4) ow est donn~e par

tandis que les singularit~s de transformation sont obtenues par les zdro ou infini dui Jacoblen

P(0,T)?I
MEMIODE DE RESOLUTlION ANttLcOlQUE.

Avec: les reserves habituelles relatives atix d6veloppements limit6s et en adoptant un maillage
irr~gulier schfmtis6 figure 1, 116q (1) petit Btre 6crite sous sa forme aux differences finies.
En admettant que les d~riv~es socondes sont los diff6rences rapport6es aui pas des d6riv~es
premiees on obtient aui troisidme ordre pras (r6f. 2)

444 9. .ar 4 2.Iv, art K, 4(4'+b, (4)r&

avec ~~''

L'analogie que V'on so propose consiste Ai identifier la forme (4) avec la relation exprimant 1'6tat
do potentiel 6lectrique en tin neud d' iir6dance. On consid~re a cet effet tin r6seau d' inp6dances
Z"h group~es en croix et siege d'un 6tat dc tensions alternatives Vrj dclphas~es doef, par rapport

aux courants (,v% qui y circulent.

A l1aide de la loi do Kirchhoff et de la loi d'Ohm on obtient en tin nocud

- 1V)++ - (V'j-V.) + 14 V-1 - V.) -C 5

Dua rapprochement entre (4) et (5) r6sultent los relations d'identification

~~IL



et des foriiules analogues pour Z I et ZV

Notons; que est la fonction de courant 6lectrique. Bile est accessible a la mesure 6lectrique
par l'interm6diaire de sa diff~rentielle qui repr~sente le flux du vectour intensit6 L d

-W . 44 -')

Apr~s avoir choisi um hodographe son domaine utile est quadril16. Pour la partie elliptique le
maillage est pris tel quo la fronti~e no passe quo par des noeuds ;, pour la partie hyperbolique
le maillage est tel que le r~seau de ses diagonales se confondo avec celui des caract6ristiques.
Do plus le maillago est reawa6 la ou le gradient est fort (voisinage d'une singularit6, offot
de Pointe, ... etc) et est relach6 la cii le gradient est faible (point nodal, ... etc).

Ce domaine est ensuite repr~sent Ai l'aide d' inp6dances calcul~es solon (6) et repr~sentant chacune
tine naille.

a) si le probl~ne A traiter est olliptique cu olliptique-parabolique la fonction R tiri reste
positive. Le r~seau repr~sentatif est alors constitud de resistances c 4f%-. 0)

b) si le problire est mixte la fonction w LUr) change do signo. On ost alors amon6 A choisir
pour los aL " des impedances inaginaires pures, selfs et capacit~s tolles que le terme en O,

affecto les t . -4V9) du signe voulu ( ft tirs

L'application aux contours de tels milieux do conditions 6lectriques en accord avoc le problme
au linite A r~soudre conduit A 1'6tablissement des champs V(4b~fg et 3 jW)dont on pout par
des mesures; 6lectriques relevor les valeurs.

Il reste alors A int6grer la relation (3) pour obtenir dans ?e plan physique toutcslignesdosir~es
de 1'6coulement corrospondant A l'hodographe choisi.

MEIIWDES DE RESOUJTON ASSOCIEES OU HYBRIDES.

On a vu que suivant les problmies cherch~s il pouvait Otre utilis6 des r~seaux soit r~sistifs, soit
composds do selfs et capacit~s. D'autros proc&1~s sont possibles.

Si V'on reinarquo que ln mkthode analogique se pr~te particul~reront bion A la rdsolution do pro-
bl~es aux unmites de type elliptique :Dirichiet ou Neuman et si par ailleurs on constato que le
calcul sur ordinateur est tr~s efficace pour la rdsolution de probl~mes aux unmites do type
hyporbolique :Cauchy ou Goursat on congoit que dans le car, d'uno 6quation do type mixto los
m~thodes analogiques ou nuni6riques puissent s'av6rer complfentaires.

Les probl~mes aux limites roncontrgs pour do telles 6quations permttent on effot un d~coupage du
docraine d'6tude en deux sous-domaines do rdsolution tel quo pour l'un il soit pr~f~rable d'em-
ployor la mrkthode analogique, pour l1autre la m6thodo ninn6rique.

D'une fagon g~ndrale los donn6es d'un problbne rixte sont port~es par un arc r' du domaine ellip-
tique et um arc ouvert O6 du domaine hyperbolique fig. (2). Los dctnaines int~rieur6, respective-
mont &SL et .At,, sont s~par~s par l1axe parabolique.

Il est souvent possible do romplacer los donn6es sur A par dos donn6es sur l'axe T a 0 On
pout alors r~soudre un Dirichiet singulier en &I~ par analogie ; puis Al partir des r~sultats ob-
tenus d~terminer man6riquenient la solution dana ..Af. par la r6solution d'un probl~me de Cauchy.
C'est le fonctionnement en chaino ouverte :subsonique d'abord, supersonique ensuite. Tel est le
cas dans le calcul do tuy~re ou do grille d'aubes.

Dana d'autre cas, los donn~es sur l'axe or w* no peuvent Otre prises arbitrairemont et doivent
satisfaire A des relations do ccxi'patibilit6. Dana ce cas il est ndcossaire d'op~rer des r~soll-
tions altornativement en 4&# (par analogie) et AL~. (par mnmrique) jusqu'A cc qu'il y ait
raccord des solutions 1e long do l'axe V % .*Ctost 1e fonctionnement eni chaline itdrative. Tel
ost le cas du calcul d'un profil avec choc.

Cos deux modes do r6solutions do problnre mixte rel~vont des possibilit~s du calculatet~r Hybride
actuellement r6alis6 au Centre do Calcul Analogique (rdf. 3). Le chamip subsonique ost trait6 par
r~seau, le champ supersonique ost d6termin6 par l'ordinateur. L'irposition des conditions aux
limites ainsi quo la liaison ontre -a, et .aa. d6pendent d'uno commiutation sp~ciale.

CA'UL DE PROFIS D'AILE.

Le calcul pratique do profils d'aile A partir do lour hodographe so hourte A trois difficult6s.
!a prem1ire provient des singularit6s introdulternt par la transformation de l'hodographe :doublet,
point critique, ... etc et qui ont des r6percussions sur la pr6cision des calculs. La seconde
difficultO apparalt lorsqu'on d6sire obtenir des profils supportant des r6partitions do vitesses
rpirtiell-went supersoniques: des precautions sont A prendre afin do n'avoir A r6soudre quo des
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problmes bien poses. Enf in la derniare difficult6 consiste en la presence eventuelle de choc
et stir la mani~re dent on en coT~oit l'hedographe. Bien que dans le probl~me le plus g~n~ral ces
trois questions sont imbriqu~es, chacune de ces difficult~s sera trait~e A part.

1. SfUARIIES ET HIUIRAME D'UN PROFIL IWN POTANr.
L'image de l'Eceulement autour d'un profil sym~trique est repr6&,ent~e figure (3). La courbe C.
3it est l'image du profil, At et X> sent celles de l'axe de sym~trie et le point P corres-

pond A l'dcoulement iiniformo A l'infini dui profil.

Si V'on s'int~resse A la fonction de courant les conditions aux linites sent les; suivantes
-Sur SI) e Ag t 9 : I I

- I~ 9' t ) I sent des lignos de gradient nul oti

- n P(.,")se trouve tin point critique d'erdre 2. Il en r~stet pour la fenction de

ceurant um d~veloppement dent le torme principal est (ref. 7)

Suir le r~seau correspondant il convient denc
- Aux frenti~es 8'c. V, A1O at rib d'imrposer un potentiel V= o
- aux infinis F) S e t VID ' de laisser le potential se fixer A la valeur V~ =
- En P de tenir cempte de l'&6tiatien (7). Pour cela ii est n6cessaire do resseniir le nailla-

go autotir de T et de calculer A 1'aide de (7) les resistances qtii en sent issueos. En cc point il
ost irpes6 in petential V = 1.

Si maintonant en considre tin pref il quelconque et plac6 Ai l'axe de pertance null le ddveloppe-
mnt (7) devient

Dans cc cas en no petit se limiter a tin demi-champ cemace prd6d=onnt ot l'odographe slinscrit stir
des feuillets do Rienann raccerd6s en P fig (4).

Pour repr~scnter tin tel hodographe ii suffit do pratiquor dans le champ tine couptire issue n6cessai-
romont de P et rojoignant selon tin chemin arbitraire tin point dui profil :le point d'arrat par
example. Sum cetto coupure la contintiit6 des fonctions Lot %vdonc X at V est assurde par
raccerd 6lectriqie.

Il conviont de remarquor quo si le profil comporte tine basso ou tin creux (fig. 5) la situation so
coiriliqtio par l'apparition d'tin point critique distinct de P.

Co fait so comprand intuitivement si V'on considre quo dans le plan do l'6coulement le m~axxire
ainsi cr66 pour los lignos do courant so rdsombe Pau a Peau aui fur ot A mesure quo lVon s'6loigne
dti profil jtxsqu'IA sl6vanotiir on tin point do vitesso stationnairoe% N .nsa le plan 9 T' ce fait
so traduit par des bouiclos des lignes do courant (la vitesse ropasso 3 fois par la n~me inclinai-
son). Ces bouios sent situ6os sur des fotuillets do Riomann raccord6s autour do l'iage W do Wi
Une coupuro telle quo WT pmottra do repr6sonter tin tel champ.

2. SIMtJLARI1.S 1.7 IK)D(XRAP19 D'IJN PROMI PORTANT.
Lorsqu'on introdtiit la circulation, los termrcs pr&Iominant pour la fonction do courant a l'infini
du profil dovionnent cotix do l'6coulement uniforme at du toumbillon (W. 4). Dans le plan ;I 4r
il en r6sulte pres do P tin d6veloppoinent commnnant par tin torno doublet et tin torme tourbi2 ion.

Dui fait de cetto pm~doninance les points do vitosso stationnaire mstent A1 distance finie dans le
plan A.,y ot sent distincts do P dans le plan 0,4r.

II. convient ri'aintcnant do distinguor doux sertos do points do vitosses stationnairos of in d'aidor
ai la corrpr6hension do l1hodographe d'tin profil

a) tout d'obomd le point do vitosso stationnairo "principal" qui r6sulto do la d6formation
cr66o dons 1'6coulemont tiniforme par la pr6sonce d'un profil. S'ID n'y a pas do portance co point
est A 1 l'infini du plan %..l s Iil y a portanco ii ost A distance finie, Dans lo plan Oi j
ccci correspond rospectivement A tin point critique confondu ou distinct do P , image do l'6cou-
lonont uniforme. Sa pmtsenco ost obligatoimo pour des profils biconvexes.

b) Ensuito los points do vitosse stationnairo '"socondairos" r6sultant d'6ventuellos bassos
ou creux du prof ii. Dans los cas pratiques leur pr6sonco ost rare.
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c) Enf in Ai faut noter que pour tine certaino classe de profil dont 1 'intrados et 1' extrados
pr~sentent la m~iie courbure et dont les borel d'attaque et bard de fuite sont effil~s il n'y a
pas de paints de vitesse stationnaire.

La transform~e dans; le plan 83 X de l'6coulement autour d'un profil biconvexe et portant. est
sch&natisde figure (6). Sur A6VV A image dui prof il la fonction W prend tine vitesse constante.
En 1 image de 1&6oulenent unifonne la fonction V? est approche par la partie iniaginairo de

oumiux*(iJ r ... L 5 " 1__ (8)
L . Lu-+l pteaw t 0 ( 4

Enfin enItJ ,if prend tine valour finie tandis que ses d6riv6es sont infinies (r6f. 6):

0 t zz0 -aCf v0u

Par ailleurs, deux conditions suppl~ientaires sont A assurer pour que 1 'odographe carrespondo A
um 6coulemont physiquement r~el.

La preiire est celle do fonneturo dui prof ii et qui conduit Ai choisir les constantos OL etR
do fagon A ce quo stir um petit corcie ontourant P on ait (r~f. 5)

soit (9)-

soit17 
11-

La secondo ost cello do partago, Los conditions do Joukowsky doivent en offot Btre satisfaitos au
bord d'attaque et au bard do fuite. Il on r~sulte quo los paints A et F image,; des points
d'arrit sont des points nodaux du champ. En cons~quonco los deux demi-imagos do la ligne d'arrfit
'FA et Pi doivent 8tre issues do A ot F , milieucdos abscisses des segments A. 1 F. et
repr~sentent los discontinuittsangulairos do la vitosse.

Suir 1e r~soau correspondant il faut donc:
a) en P repr6sonter d'apr~s (8) lo doublet par tine source ot tin puits 6lectriquo s6par6

doe . Si r'a cos sources d6hitent tine intensitd 6lectrique rel i6e Ai am

h E (10)

b) sur DS~IA imposer tin patentiol VC,. L'intensit6 d6bit~e par cotto 6lectrodo est reli6e
A la circula tion rt par:

?A, .r (11

c) onfin los points A% 1 infini o t F ainsi quo le point critique NJ no saint pas ali-
ment~s et prennont d'oux-mfrios leur potontiol V1A , V'F etV~

Le r6glage dos conditions do partage et do fermeturo ost le suivant
a) Thins; uno premi~re exp~rience ou la circulation ost r~gl~e 6gale Ai z6ro, la constanto

diu doublet ost 6valu~e Ai 1aide do l'&6tiation (10).
b) le doublet 6tant maintenti aui maie niveati do potontiol il ost r~igl6 stir As FV A la cir-

culat ion assurant d'apr~s (9) et (11) Ia condition do fermeture. La front i~re AS P t D prend
alors tin patentiel V .

c) los patontiols Vok et V/p sont riesur6s. S'ils sont 6gatxx 6i V/. la condition do partago
est assur~e . Sinon il faut op~rer plusietirs ossais en jotiant stir los positions respectivos de V
et ?i puis do rechercher par interpolation la disposition satisfaisant ?i VP &4 e.

3. CAMUM DES ZONES lIP VIMhSES SIIPERSONIQUES.
Quo le prof ii soit portant ou non difffi-.nts typos d'hodographe~sont Al consid~rer suivant quo le
Mach aniont est inf~irieur, 6gal ou sup~rietzr aui Mach critique.

Si le Mac~h amont ost inf~rieur aui Mach critique l'~coularient ost enti~rement stibsonique et son
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hodographo est situ6 dans le demi-plan O :o a(fig. 7b). Le probl~me pos6 est tin Dirichiet et
sa solution accessible A l1aide d'un r6seau r~sistif.

Si le Mach amont est C-gal au Mach critique, l'hodographe est tangent A l'axe 0' o .Le pro-
blme pos6 est tin Dirichiet singulier dont la resolution est toujours possible par la imthode
analogique.

En particulier on pout ainsi determiner des profils dont 1 'hodographe est limit6 par wi segment
&.W de l'axe 4rue (fig. 7c). Cos profils supportent tine r6partition de vitesses; du type
plateau, le palier 6tant A M .1I . En plagant judicieiserent le segment A J par rapport A'
on peut esp~rer obtenir ainsi des profils qtii pour des Machs sup6rietirs pr~senteront des distri-
butions Peakcy.

Enfin il reste a consid6rer le cas o(I le Mach a.'nnt est sup~rieur ati Mach critique niais tout en
restant inf~rieur au Mach d' irrdversibilit6. Dans ce cas 1' imge du prof il d~borde dans le
demi-plan a- eo et son trac6 est contini puisqu'il n'y a pas de choc (fig. 8a).

Un r~seati do selfs et capacit6s perrettrait de repr6senter tin tel domaine. Toutefois l'unicit6 du
probl~me aui limite ainsi pos6 est dotitetise la formne de M MI pouvant slav~rer incompatible avec
los conditions r~gnant dans; la partie elliptique.

Plusietirs m~thodes sont possibles. La premi~re consiste a se donner l'hodographo jusquIA sa fron-
ti~re transsoniqie M S l' (fig. 8b). Il convient alcrs dc rksoudre tin deuxi~ne problme de
Franki dans le domaine 6%, "l~1 5P . .* Ensuite la partie inconnue de la fronti~re N~ " est
d~termin~e par la resolution d'un problme du type I (torninologie de Picard) dans *e quadrilat~re
5 P.r %'

Uweautre possibilit6 consiste A remplacer la donn~e sur les arcs L, H4 et P9'par celle d'tine
repartition de fonction do couirant WI C ) stir l'axe @r v6 (fig. 8c). Dans ce cas ii faut
r~soudre tin Dirichlet singulier dans le domaine 9' 05 1. Vd', puis un problme de Cauchy dans le
triangle curviligne L. NW -r partir des distributions %f (% i et v? C() stir L. wi.

L' inconvenient de ces deux proc~dfs est qtie Voan ne petit pr~voir de faqon rigotireuse si les parties
supersoniques ainsi calcul6es sont exemptes de lignos liinites, donc de choc.

Toutofois il fatit remarquer que de tols dcoulet,,ents continus. ne soinbiont expdrimentalenent exister
que lorsque la vitesse naxiniale n'exc~do pas Muw 1,2: ou 1,3. Au del.1 les chocs; deviennont nets et
il est n6cessaire d'en tenir compte dans les schornas de caictil.

Ce fait so conprend si V'on so rappelle quo pour quo la recompression soit isentropique il est
n~cessaire qu'aux points du profil of) cule ait lieu la courburo soit faible. Si le naoibre de Mach
m'axim= est trop fort, cette recompress ion devra sl'6tondre stir ume portion plus large du profil
en sorte quo la n6cessaire variation de la pente, e. variant au m aximm do 900 A 0%, entralnera
tin dioc.

Si maintenant V'on suppose tl,,, 4L1,25, on corprend A l'aide des sch~nas de la figure 9 qu'il
importe peti pour tine telle ganine do vitesse do se poser le probl~me de l'oxistence d'tin choc. En
effet stir la figure 9b on petit voir l'hodographo suppos6 d'un choc, dont l'image est W&. . Si
Ilintensit6 du choc est faiblo l'hodographe prend l'allire sch~natis~e figure 9c, et devient ainsi
tr~s voisin dum schema continti 9a.

Si donc V'on suppose 11-t. 41,25 on petit supposor qu'un calcul bas6 stir tin sch~ma continti conduise
pratiquenent a des r6stiltats voisins do ceux quo V'on aurait obtentis en tenant compte d'un choc
faible.

Maintenant donc le sch~ma continti ii ost possible dans le cadre do cos hypotheses do simplifier
1'&juation (1). Si en effot dans la zone suporsonique 41 ost petit on valour absolue,on petit poser

In ~ --

en sorte quo (1) devient

En so donnant W stir le contour 0' tM' oi probl~me A1 r~soudre est tin dirichiet singulior. Pour
l'analogio la zone supersonique M(tl mi'. est repr~sent6e on reliant l'axe (r A. o1la fronti~reL1w
par des resistances.

4. RESULTATS OBT~MJS
Plusietirs profils ont ainsi Wt d~termints. Tout d'abord la m6thode a Wt test~e par uno comparal-
son avec des r~sultats do Nieuwland. L'hodographe obtenti A partir d'unc distribution M o 4cc))
(cas e de la r~f~rence 7) a W maill comm. I Iindiclue la figurc 10. Pour des raisons do conxnod~t6s
le bord do fuito a W, pris effil6. Stir la figure 11 on pouit voir Los r~sultats obtenus. Les cotes
du profil ont Wt retrcuv~es avec tine orreur aum plus 6gale 5 It de L'(6paissour =aimaLe.

Cc mne hodographe a WC ronqu6 Al l'axe Cru. a . Les calculs ant conduit 3 tin profiL d'6paisseur
noindre et supportant tine r6partition de vitessesassez voisine (figure 11).
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tine autre cwoparaison a W faite avec des r6sultats abtentus en soufflerie par Monieur Vincent
de PaulO.N.E.R.A. Los calculs ant Wt effectu~s A partir d'uno distribution M -1. 40*) obtenue
pour um profil NACA 64A010. Les cotes. de cc prafil ant Wt retrouv6es avcc tine orreur de St
(fig. 12). Tautefois tine difference est apparue au bard d'attaque sur l'emlacement de la zane
supersanique.

Enfin il a Wt calcu16 un tas portant. Paur hadographe il a 6t pris un contour voisin d'un
des r~sultats de Mr. Vincent do Paul. On pout voir figure 11 les r~sultats obtenus. Pour ce
calcul il est A pr~ciser quo la fermeture du profil n'6tait pas rigoureuso et quo des balan-
cements ont Wt ndcessaires * Ces; corrections ont entrain6 tine modification de 1,5% de la por-
tance. Par ailleurs la position du point critique fut d6licate A trouver et s'est r~v6l~e etre
tr~s proche de P , image de 1 '6coulement amont.

S. ALGOR1N'E DE CAIDL DANS LE CAS D'UN CIIOC.

Lorsquo le Mach arnont apprache la valour du Mach d'irr~vorsibilit6, 1 'hypothbse du sch~ma cantinti
devient de mains, en mains plausible. L'intensit6 du choc gagne en vigueur et ii existo uno plage
du Mach amont pour laquelle on pout admettre que 1 '&oulement est irrotationnol on aval du choc.
Dons co cas 1'6coulement est toujours A potentiel et la m6thode do l'hadographo ost applicable.

Sur le plan r6solution ce probl~me camporto plusieurs difficult~s. Taut d'abord l'alluro do
l'hadographe et la correspondance roctuollo sur los images du choc sont inconnuos * Cotte difficult6
sera en partie lev6e en 5' inspirant de r~sultats exp6rimentaux obtenus 3 la soufflorie de Lille
par Messieurs Dymont ot Gontior (ref. 9). D'autro part le typo de conditions aux limitos; a sa-
tisfairo rend trL~s d6licat la recherche do solutions U ~ tn schema do calcul ost ici
propos6 qui s' inspire do colui de Gornain (r6f. 8).

En so limitant, pour simplifier, au cas du profil sym~trique non portant on pout vair figure 15
le trac6 suppos6 d'un tel hadographo.

Sur cette figure los arcs B'L ot Iwi 101 sant los images des parties du profil situ~es en
amont ot oval du chac. Sur ces lignes %V, prend uno valour constante.

Les arcs &% Q et 4..sQ sant los; images des faces amont et aval du choc. En oxprimant la conser-
vation do la ccmposanto tangontiollo do la vitesso et du flux do masse normal et on tenant ccxrpto
du fait quo los arcs LiL et L Q ant la m~me image dons le plan physique on doit satisfaire
en des couples do paints 'a sur I., ( , (Q.% ,4 sur &.& q los relations

'ellt' q1 
%?' 9 1

Cos relations montrent quo la correspondance ponctuelle entre Li e t L-, Q dopend du champ A
calculer. On pout par exemple supposer quo le choc est en chaque point droit :e4, w () Dans
cc cas los relations 12 se simplifient consid6rablement. M!aiheureuscent cette situation, qui
conduit A des lignes limites, no semblo pas r6elle.

A partir des .-6sultats do Dyment et Contier un trac6 repr~sentant cetto correspondanco est mantr6
figure 15. 11 y apparalt quo droite au pied du choc la corrospondance 6volue do faqon impr6visible
Notaninent aui point sanique Cq il scmble quo la carrospondanco soit la linite d'un choc oblique
d'intensit6 nullo.

Devant la dift~cultC6 de pr~voir cotto correspondance il semblo qu'il soit plus simple do no se
fixer qu'une oartie do l'hodagraphe, puis d'en trouvor le complAement A 1'aide do 12. Clost le
principe du sch'rn propos6.

Les parties subsonique et sonique do l'odographe sont choisies arbitroirement et los solutions
W ( to) et (ft,io) sont calcul~es par analogie. A partir do cos r~sultats la partie amont
du choc ost d6termin6e num~riquement et des relations do cwipatibilit6 sont A satisfeire sur
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la ligne sonique w 1

D'urie fa~on plus d6taill~e on so propose d'op~rer de la manibe suivante.

L'iniage 0'14 et I., V1 du profil est fixe et supporte la condition #'= * . Ensuite ii est
choisi tin segrient Q 1i pour image de la ligne sonique et tin arc G L., pour image de la face aval
du choc. Suir ces deux lignes ii est pris des r~partitions de fonction de courant ett r))qe
compte tenti 6ventuellement do la singularit6 en Q.

Pour l1'ensemble du domaine 1) vJQ L1 i le probl~me h r~soudre est tin Dirichiot. Entre autres
66mnts de solution on obtient los repartitions de d6rivfts norma les "%( 4) etSu
Q Je t qa.,0

Los repartitions 1CF4, I,) et C3 (9 , )~ prnlettont alors do trouver le premier membre de (12b)
qui joint A (12c) permot pour chaque 0, I, de trouver le point Q% M, correspondant. V.iage
do In face anoint du choc est alors connue et stir celle-ci los conditions 12a et 12b sont A res-
pecter.

Si cette ligne est comprise entre los detix caract6ristiques issues de Q on petit A partir de is
double donn~c ltf' et 6%r qu'elle supporte, r~soudre tin probl~me de Cauchy et determiner l'arc
P. L-L image d'tine partie du profil. Do plus; on ohtient tine loi de fonction de courant stir is

caract6ristique q?
II resto enfin a chercher ls solution dans; le danaine FQ V A partir des r6partitions do fonction
do courant stir a t Q W En plus do l'arc IL ii est trouv6 tine nouvelle distribution de
d6riv6e normale %~ ,) stir W.

Si "M =P A% il faut recomoncer tout le calul mais A partir do %1,09) auti eu dohs)
Ce nouveau cycle conduira A tine distribtition et ainsi de suite jusqti'A convergence.

Cette convergence W'est pas certaine et ici ii est comptd stir plusieirs essais avant de l'obtenir.
Par ailleurs ces ossais pr~liininaires montroront comment choisir les donn~es pour quo d'une part
l'arc qt vL~ soit bien ccinpris entre los caract6ristiques issues de Q at d'autre part ii nly sit
point do ligne limite. Nois; esp~rons potivoir puulier prochainenoent des r6sultats.

6. APPLICATION All CALOJI T)ATJBFS Di TiIMMINEi.

Le probleme do In deter. ration do grille d'aubo diffre do celiii du profil isoI6 d'une part par
la condition do n6riodicit dii chamip do l'6coulenent, d'autre part par 1e fait qti'ontro
I'anont et Il'vsl 1e vocteur vitesse vanie.

Trois transitions transsoniques Ii travers tin atihage sont envisageables. Tout d'abord ine transition
subsonique-supersonique clest le r~pime do 11oyer-Laval observ6 dans los ttiy~rcs. Ensuito tine
transition subsoniauic-sulsoniquo avec tine oti plusiours zones doe vitesso supersoniatie :c'est le
r~gime do Taylor. Enfin ces zones do vitesses supersoni ties petivent 8tre bord~es par tin choc.

Dans ce qui suit ii no sera considWr quo le r6RiM e de oyer-Laval. Le css du r~gime do Taylor
avec oti sans choc pout 6tro trait6 suivant los miincs techniquies quo cellos d~crites plus haut.

On considre donc tine grille d'aubes caract~ris6e par tine cntr&e subsonique C R. I% , tine
sortie sunersoniotie (q, ,Q~j ) , la transition Ctant du typo Mo-yer Laval (fig. 16). La grille
ost d6finie gdom~tricniement mar son pas h , sa section ati col S , son 6paissetir .6 . Ses
paramtres a~rodvNaminucs sont la d-6floxion 6 a e1 - 9, , le coefficient do survitesse

14 t.A le dt611it a. t In circulation ri . Los lois do conservations donnent:

le caract~re p6riodiei do 1'6coulemont permet do limiter It domaino d'6tude 5 tine bande no
counprenant qu'iun soul profil et bord6e par deux limues arbitmires P,' t\ ea at p., M se
d~duisant l'uno de l'atitre par tine translation "k -

lintre doux points honologues M ot HPla fonLion do courant augmente J'tine otiantit6 constante,
tandis quo le flux nor-isl ost transris

Awti infinis atoint ot aval Ia douxiNre de ces relations s'6crit

Tnfin stir le profil ln fomet ion de cotirant ost constanto.
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Dens le plan do Tricomi (fig. 17) los L6coulements amont et aval ant pour images los points P,
et IFL et la transform6e do l'nube s'applique sur le contour a.. %@1 CtL44i,1all. Le bard
diattaque du profil est arrondi, et son bard do faille est I rebroussemont.

la pfriodicit6 du champ se traduira par l'application stir des feujllots de Riemann de cheque
banide I. ~~~.Ces feuillets ont en canrim les points P, et p.et sont raccord~s par
tine coupure arbitraire p,j.mp supportant les conditions 13.

Des singularit~s de transformation apparaissent mix points 4. et P4 . Au voisirage de ces
paints le caliportoment de iVs'approche par les d~veloppements (r~f.ll) pros delt -I w z
pribs do%

Sur la ligne sonique la rechorcho do solutions so prolongoant analytiquoment A travers la franti~re
trenssonique et qui, au-delI, pr~sentent tat caract~re trivalent (r6f. 12) conduit A respecter des
distributions do la farme

(14)

10 Le caract~re rnixte do l'6coulement incite ) fractionner l'hodographe en sous-dcmtaines do
resolution. Clost ainsi qu'on ost amon6 A r6soudre successivoment un problie do Dirichlet sin-
gulier pour le subsonique, tin probli me do Cauchy pour le transsoniauo, tin pro'hme do Goursat
pour le supersonique. Ces calculs nkessitent los donn~es suivantes tiun contour O, 60 6g aL, .une
repartition 'C(Q) tine distribution do vitosse sur l'axo do la tuyi~re do sortie.

20 Le probl~me do Dirichiet est r~solu par la m6thode d'analogie 6lectriquo. La transposition
6lectriu des canditions aux limites consisto A :stir 0,6, et a, b%, imposer le potentiol V.
sur b, bt imposer scion (14) une repartition c uracopep stfieax
conditions (13) A l'aido do transformateurs. Fnfin tine intensit6 Xp ost r~gl~e en r, do tolle
sorte quo l'image do la ligne d'arr~t aboutisse bion en CL . Sa valour est roli&e A l'incidence
normalo Q, par la relation 0,1
Co regime 6lectriquo 6tabli, l'int~gration du chuma V( %,r) conduit au contour subsanique do l1au-
be, ot la mesuro des intensit~s sur bgb'q A la distribution do d~riv~es normalcs IPtG

30 Le contour bi CID C% li-b1 do l'hodographo ost ensuite d~termin6 A1 partir des distributions
*r(e) et 'V VB.L&-juation (1) ost 6crite on diff6rences finies suivant 1e maillago sch6ma-

tis6 figure 17.

CZe Ot fI '~ *t C *L 'K TY hWa. (: 41,tA,)

Partant do la ligne 1#1b%. lo calcul des '4s'cffectue do proche on proche A l'int6rieur du
daiiaine bit, 041 b%. Si le champ obtonti contiont tine ligne linite il oAt n6cessairo do modifier
la distribution (14) en joitant sur los A.,, et R o, t do recoaencer les deux 6tapes pr~c6den-
tes. Le retour au plan physiaie conduit ensuito A1 la partio transsoniquo do I '6coulement fronti~re
transsonique incluse.

40 Le calcul do l'aubc so tormine dans le plan physique par la r6solution solon ia m~thodo
des caract~ristiques d'un prob1~me dont los donn6es initiales sont la frontie3ro transsoniquo et
la Ign do courant issue de 0 . Stir los caract~ristiques doscendantes, d6termin~es de procho
en proch, los points du prof il sont obtenus on satisfaisant A la condition do d6bit.

Un calcul a ainsi Wt effectu6 A partir d'un hodographo stibsonique choisi a priori, d'uno dis-
tribution *r() a C 0') et d'tine ligne tio courant rectiligno issue do 0 et confondue avec
l1extrados du prof ii. La grill obtenue ost pr6&,ont~e par la figure 18.
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- SOMMAIRE -

On se donne l'hodographe relatif h l'dcoulement sur un profil portant, la vitease k l'infini 6tant

subsonique. Cot hodographe pout contenir une r6gion 16dgrement supersonique sans choo.

La premibre phase du calcul utilise la loi de compressibilit4 de CHAPLYGIN. Des hodographes du type

ddsir6, ddpondant d'un asoez grand nombra de parambtres peuvent alors Stre construits analytiquement,

s conditions de fermuure du profil et la position de l'image I du point h l'infini par rapport au
contour de l'hodographe 6tant ddtermin6es avec pr6cision. Partant do ces r6sultats comme premibre

approximation, on pout par modification de la position de I d~terminer dos profils rdpondant h la

loi do compressibilit6 oxacto.

Une mdthode do calcul, bas6e sur la ddtermination d'une fonction perettant de ddgager la singularitd

relative h l'image du point h l'infini, est ddcrite.

- SUMMARY -

DIGITAL DETM0INATION OF SUB-CRITICAL WING PROFILES BY TH HODOGRAPH METHOD

An hodograph is given for a lifting airfoil with a subsonic velocity at infinity. This hodograph

may include a weakly supersonic region without shock.

The first step In the computation involves the CHAPLYGIN compressibility law. Such roired hodograph

containing a fairly large number of parameters are obtained analytically. The closure conditions of

tIa corresponding airfoils and the location of I (image of the point at infinity) with respect to the

i.odograph boundary are obtained with accuracy. Starting from these results (first step), the location

of I is changed in order to find some airfcls corresponding to an exact compressibility law.

A computational method is then described, involving the detornination of a function which exhibits

the singular behaviour of the point I.



L'OB3 EE CETFE ETUIE et d'apporter une contribution h la ddtormination des caraatdristiques
sdrodynamiques do profils portents, soumis h uri dculement uniforme ot subsonique h l'infini pouvant
caciporter un domain* transsonique sans choa.

On utilise tine mdthode do calcul hodographique bazde sur uno technique diaborde par R. ISENDR~,
consistant essontiellcint h ohoisfr un contour hodographique H no comportant, dans a& partie utile,
aucun. autre singul&aitd quo is doublet-tourbillon au point I0, image do L'infini du plan physique.

Un. autris originalitd do la mdthods consists pour facilitor le calcul numdrique h ddgagor 1'effet do la
singularitS I k l'sido dtun champ auxiliaire induit par tine suite r guiirement doholoannd do
singularitds tdontiques dont toutes sauf cello situde en 10 mont en dohors du champ utile de
l'hodographe H.

Ce champ do singularitis une fobs connu, le probibme eat i-amen6 h la ddteznlnation de fonctions
rdgulibres cocpidmentairos &P , Sf pour 1. potentie]. at la Zznction do courant qui prennont sur
lo contour de l'hodograpbe des velours bion ddtermindes. loo calcul do ci.9 fonctions pout alarm 8tre
offectu6 4 l'aido do rdseaux analogiques ou par une mdthodo do relazatioz.

14e choix de lhodagrapho H Amauto dtun calcul prdliminaire, effoctud dans le cadre do ltappro~zaation
do CHAPLYGIN. Una expression anelytique do la solution, contenant tin asses grand nambre de coafficients
arbitraires, ayant ainsi 6t6 dtablie, 1e calcul numdrique do H a 4td prograzad sur machine do grand.
capacitd.

Cot hodographe, dvontuolloment, Idgbrement ddform6 oat onsuite trait6 h l'aido des 6quntions du fluidg
i-del, la position do la singularitd I correopondante dtant mdthodiquement reeherchde au voininago do 10.
Le retour au plan physique s'effoctue ensuite suivant la mdthode classique.

Dina ce mdmoire, la mdthode do calcul badsur i l technique propoad. par R. LECOMRS oat ddcrite. Un
example numdrique do caloul do 11 dans 1'hypothbse du fluide fictif do CHAPLYGIN eat prdsontd. Lea tables
nmnriques des principales fonctionb ndceasaires h l'dtablissement des veleurs de Sq Ot j ,stir tin

contour dthadcgrapho pour un dcoulemont do fluide i-del, sent donndoo.

LA miss au point du procddd analogique dtant encore on cours d'dinboration, aucun rdsultat concret no
pout actuellement Otre prdaentd.

CE1lERLIFS

Aprba avofr ddcrit la cinse dos hodographos enviaagda, on indiquera, la mdthode gdndrale suivie pour le
calcul des dcoulonenta ontibremont aubsoniques, puis des dcoulements mxtes.

COORDOIM ET CIASS D' HODOGRO&PS CO1IIDERB

~ddsigtent la viteaso locale du fluids et 04 la cdldritd du son dens lea conditions gdndratricoo,
on adopto aelon lee ndcessitda imposdes par le calcul, l'une au l'autre des variables suivantest

Y-4 q' (2 0~ f~IlT Fr

Le nombre de Mach est t

Pour in velour y 1,4 dui fluids rdol, la relation 2) 8'intbgre en posant e
sous Is. formsF,,na =V-

(3) , 4 

L'hodogrephe coneiddrd a la forma reprdsontde fig. 1, dens lea axos V, 0'

Le praf'il correspondent oat diasyindtriquaoet portant.

Le point I,. eat l'image do l'3.nfini du plan physique ; la 'valeur do r, qui lui correspond eat

infdrieure h la velour critique s Z;; < a- 4 oat lo rapport des chalours apdcifiquon. Ia ligte
'(44 Y

AMP correspond h lox--adoB dui profil. I& ligno At MI PI de l'hodographo correspondant h l'intrdoa du
profil prdsento une boucle destinde hi dviter la prdsonco do points critiques dana In partie utile do
lthodograpba.



POTIFDIhL, FVONCTION DE COURAM1, EqJhI'ION DU PROMI

0 ddaignant l~a pente locale de la ligne do carant stir la direction do Isa vitosoo h 1' infini, on
rappolle que 1e potentiel C? t la fonction de courant t satisfont les relations

y

(5) C

Ivec lea variables (r,8 satisfalt la relation

(6)~ ~ e1~ )1 vec (7) ~~ 4 z~irt.

41dtant nul our le profil. Celui-ci eat obtenu par intdgration do

Cfdtant Isa potentiel our Ie contour.

PRINCIPE DUJ CAICUL D'UN ECOUIM!EW EIT21EF04EN SUBSONIQUE

La forms d'un hodographo du type ddsird pour uno position do Isa singularit6 I ,I eat d'abord calcul6
dana lhyopothboo dui fluids fictif do CHAPLYGIN. Cette forms eat conservde pou;r1' coulement compressible
an fluids rdal et on premibre approximation la position du point 100, image do l'infini, du plan phyaique,
W'est pas modifids. Il eat admis, sans acuci do riguour et sans ddnonstration, quo le probl~me du caloul
do la fonction do courant f' et du potential If eat bien pood avec lea donndea ci-desaus.

(P at 41 satisfaisant h des dquations lindaires pouvent Otre diconposdes on deux solutions do ces

La solution v f,4' ) et tine solution ayant on IoD la m8me singularit6 quo lIa solution ( Cf, )
at n'ayant~ pa d antres singularitds dans le domainso utile do l'hodographe. Si ( (f, q( ) pout 8tre
ealculis avec prdoiaion, il rests h ddterminer los fonctions 61c et 84f rdgulibras dans tout Ie domains
utile do l'hodographs et telles quo 41.' + S'Y soit nul our Ie contour do celui-oi. On dlimine ainsi
dui calcul par rdseau analogique ou par diffdrences finiss, lea difficult~s posdca par le voisinaga des
aingularitda.

La mdthcde do R. IZGEN]DRE consists h ohoisfr pour Is~ 4" )l champ d'uno ligne do doublets-
tourbillons en nombre infini, rdgulibrenent eapacds sar 1axe parnllble h 1axe dos e passant par Ico.
On pout adopter tine suite do doubleta-tourbillons idontiques ospacds do 2 IT ou mietix, pour rdduiro
l'importanco do Isa solution rdgulibre ( Sq', S-Y ) une ligne do doublts-tourbillons altorndn
spacda do X . Dana lea doux cas, l'uno des singularitds est placde en Ioo, las autres so trouvont

done h l'intdriour du champ utile do l.'hedographe. cj?' et V4t peuvent aJlors s'exprimer par des odries
do fonctions do CHAPLYGDA qui font intervonir des fonctions hypsrgdoadtriquan facilos h calculor.

Coo calcula ayant Atd offoctuds pour tine position donnde do la oingularitd Ic,, on vdrifie si Is compor-
toent do la solution au voisinags drm points do vitasse nulle est correct. S'il n'on oat pas sinsi, on
reooence lea osloule pour tine nouvells position do IOD voisine do la prdcddonto. Co tAtonnenant pout
Stre conduit d'une manibre mdthodique.

PRINCIPE IlU CAMU D'UH ECOUMLM1T TRAIISSONIQUE.

Le contour do lthodographs nWest, dana ce cas, donnd quo jusquth lIa valour Z; do r, dgale h la,
valour critique fig. 2. Uos donndos sent 4' a 0 aur Io contour do l'hodographo e =' (z,,6
et 4z =flT,.(%,e) sur Issegment MI , Y2 ,4r 4tant nu.l on MI at F2.'

La mdthoe do rdsolution pour Isa d6tarmination do i4' puis do \V dams 10 domaino subsoniquo st
idontique h callo orposdo dana Io paragraphs prdddento lIa valour do devenant '(,)-4'
our Io segent MI , K2. ls contour 4'a0 do la partio oupers~nique, ouppos6 tr~is voiain do 3~A
ligno sonique C = r, , pourra 8tro obtenu par Isa lindarisation suivanto i

Avoc lea variables hodographiquas olamoiqus 0r , 0 lIa potential oatisfait h la relation
+ k (Oij,: et comma our 10 segment sonique Mi , 12, c. at (a-) sent =uiB, on as

'= (6) = 1 (9)

f ( e ) ot g ( 0 N/ dtant fixds dans Ie problbmo subsonique prdcddant. la valour (7j, do T. sur loa
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profil eat donc donndo au 2kao ordre prbsaen T aur chaque ligne 9 ate par la. relation

4t~ e)f +1(0 0:

On en ddduit !a valeur Ttdo -C par la relation (3. I& validit6 do ce proc~d6 a 6t6 d6aontr6epratique-

ment dana un calcul analogique par la mdthode des rdseaux.

AXALYSE DPTAILLEE 1LU FROBILM

Les principea do la mdthode do calcul aeront expoads ici, sans rappoler les ddaonatrationa rigoureuses
6tablies par R. IEGEWFRE ; ila comprennent lea diffdrenteas phases suivantest

a) - condition do fermature du profil,

b) - calcul d'hodographas du typo ddsird6 et des profile correapondants dans l'approximation du fluids

fictif do CHMPYGIN,

a) - ddfiniticn, pour l'6tudo an fluids rdol, des fonctiona do CRAPLYGIN intorvenant dans 1e calcul. des
adries exprimant q"' et %ry',

d) - valeurs des coefficients des tormes do ces sdries,

a) - positionnement do la singularitd dans Ie champ do l'hodographe do contour donn6.

CONDITION DE FERMMBLR DU PROFIL.

La aingularitd au point iage do l'izdfini. du plan physique eat un. doublet-tourbillon. Une 6tudo locale do
cette singularitd (Annxe I) montre quo 1axe du doublet oat parallblo h 1aze dos 0 et qua, pour asurer
la conditiou do fermature, lo rapport do llintenaitd du doublet B h llintensitd du tourbillon 20 eat
donn6 par La relationt

B(4- -q.) T-+ zC =o

APPROXIMATION DE CWALYGIN.

Cette approximation eat obtenue en faisant tondre T vera-I, dana lea dquations gdndralos, on obtient

POTENTIEL DES VITESSES - le potential F eat done une fonction analytique do la variable complexo
A at on pout poser

F: t +- +~Lo

A a (4 ~e ' (_ + te(,"') +f
do sorts quo Ia variable auxiliaire t assuro la tranaformation conforoe do 1' intdrieur de l'hdographe
on 11inthr-.vur du cercie do rayon 1 dana Io plan t zRecw

Au bord. d'attaquo W= -ofc (point d'arr8t)

Au bard do fuite W 4 IT+o( (point d'arr8t)

SurlItertrados a_ . CA) T OCK

Sur Vitrados C c-IT<,W4 -ac

eat l'anglo do dibdro du bard do fuite,

t () eat uno fonction rdgulibro h l'intdriaur du champ utilo do l1hodographo.

IUdtude effectudo pour obtonir des hodographes du typo ddsird a montrd quo si la fonction f Wt Oct
choisie partout rdgulibro, sa roprdaontation par une adrie entibre devrait retonir un noabre do tormes
conaiddrables. L'artifice 6vitant cat inconvdnient consists h introduire, dans l'expreaaioa do f (t),
des tormes ainguliors h l'extdrieur du cerale d'unifommisation at a'satrainant pas I& ordation do points
critiques h l'intdricur du champ utile,

Pinalament, l'expreaaion retonue pour f Wt eatt

+ (C + 0)f& [4 +te"(4IeY) + M

g Wt 6tant une correction rdgulibre dont lo ddveloppoaent en a6rie ddbute par un terms en t2 pour no
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pas affecter la condition de formeture du profil :

(t (a,+L)~ + +

CONDITION DE MY-4TUE Au voisinage do Ia singularit4

+: o~"~~ e + (a4+LbQ)

10 dernder terms 4tant Is d~but du ddveloppement do f Wt

d~t t _=_A _ avec As 0 Coc~ cas Go4 + a.
A. + B.

I& condition do farmeture (Voir Annexe I) imposet

A0 -0 at B -

ITI 1w. It

1A caloul do &I at bil ddduit de i'exproasion. do f Wt, conduit aux 2 relations

~A[tos cc F, ec~s (o+y)] (~esino 0i-6 $1* +-C 0

(12) [i+ -Csi~ct + Dcowioa - VC sit- (T. C) ED cos W 0
-A[s4.- e (..') W.4 ot -6 CAS (T+at) ~tk 1r, 31ft

qui assurent Is. fermeturi, du profil.

EQUATION DE L'HODOGRIPHE. La adparation des parties rdelle at imaginaire de Ia relation (9) compte

tenm do l'expression do (10) do f (t) donne l'4quation param6trique du contour H de 1'hodographe cherchd

+ AC. M u(w-c) + 61 + 46 cs (W+(+) - 0S Yo

D + C* ... -ski

Sur ltxtradoa of< o4TT+c

Sur 1intradoa of-T< W4-I%

Au bord d'attaque i (point do vitesse nulle) uW = - o

Au. bord de fuite :(point do vites. nulle) W a-T
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La valeur de 0 our liertrado slaexprime sous Ia forme

z ~ 14- M (W4+ . 3jc+t 4-.y) .

+ K ~- e-s((A+ el) +ZtO c(W +a(+ Y) yZ COSz I I

Skt~ (Wt, (w.c - 9!'4 swi .c+ V)

4 + C u.0)- e C4 (co- cc +y
4-~. 24 e3+ .ZOOS (W-4i) Z6 COS ((AI-Oc+ y'). US r
+ b 4Cl2w + s, Si, 0)+. + bCS + a i"M)

Sur l'intrados cette quantitd eat &t diminuer de IT.

Le point IOD image de l'in±'ini du plan physique a pour coordonndes d . .. Q 0

Les parambtres diaponibles sont :~ T, o A, Br C, D, 6, , ,Y', a,, b,,

Les 11 premiers doivent satiafaire aux 2 relations (11, 12) qui assurent la condition de formeture.

On ne discutera pas ici lea limitations de choix h imposer aux coefficients arbitraires pour obtenfr
un hodographe sans points critiques dana Ia partie utile. Ua calcul numdrique program6 aur machine do
haute capacit6, qui eat d'ailleurs trba rapids, permet d'dliminer, aprba calcul, lea rdsultats qui no
conduiraient pas h un hodographe do la classe conaidde.

Lo~tdrfl _qRa hsqe Un autre critbre de bon choix des parambtrea arbitraires
conaiste h vdrifier que le profil correspondant dans 1approximation de CRAPLYGIN possde 1'allure aou-
haitde pour lea applications (dpaisaeur relative, rayon do courbure au. bord d'attaque, gradient do
recompression au bord do fuite, etc ... ). Ce profil eat obtenu, d'aprbs l'dquation do l'hodographe, par
l'intdgration. aur l'intrados et l'extrados des relatiosa

Le rayon do courbure en un point quelconque du profil eat :R t A_
do

Les calcula do x, y et R ont Atd programada. dw

Exemnnie t valours rnumriqucs dos parambtrea

.-= 0,85 0( = 110 .9 = 0,07 A - 0,08843 Bn -0,20

C = -0,054258496 D u 0,0513551

6= 0,05 S=0,05 -.320 Y'~ -500

a2 ,L12 n .. bn aont nula

Avec ces valeurs, lea conditions do fermeture (11 , 12) sont satisfaites.

Las rcsultats des calculs sont indiquda sur lea figures (3) , (4) .t (5).

La figure (3) donno la forme de l'hodographe. La figure (4) donne Is forme du profil. La figure (5) donne

la rdpartition dos nombrus do Mach our l'oxtradca et aur l'intradoa dana i'approxisation do CHAPLYGIN

L'anglo quo forme la direction do la ligne de cou-ant aboutisant au bord d'attaque (point d'arr8t), aveo
la direction do ia vitesso h l'infini, eat 90,272. L'angle qua forms la biasectrice du dibdre do bord do
fuite, avec la direction do la vitosse h l'inl'ini, eat 130,15.

CAJL'L DE LA SOLUTION EN FLUIDE REEL.

DEFNITION, POUR L' EMDE Ell FLUIDE REE, DES PONOTIOVS DE CHLPLYGIN INTEVENAN DA20 LE CAILCUL DU

CIAM DES SINGULARITES. Des deux relations (4) et (5), on ddduit en diist C

tL4t z, l



Lsea olutions de CHAPLYGIN sont lea solutions p6riodiques en 0 ddpendant d'un parambtre n positif

fn (-V doit alora satisfaire l'dquation:

L. calcul, do ( cf') 4 ') fera intervenir deux solutions particuli~res de Ia prickdente relation.

Le. promihre fn (Z;) est miule au point d'arr~t ( r - 0).

La deuxihm c (C) et nujlle h Is vitesse limnite ( V -1).

Solution fn (~ Z On oberche une solution do la form '-(4 -r)P F{)
avee C~

F CC ) est tuna fonotion hypergdomtrique F (a, b, c,

Soulee lea solutions correspondant k C; > 0 sont retenues. La s6rie hyperg6omtrique reprdaentant F eat
&lore convergent. pour 0 < V < I av'eo cK= Un calcul. faoile condui~t alors aux r6sultata
suivants i pour 0C- at

pour C= t

C'- + b et I±g4+ 'y) 4

Solution v,() On pose: ~'

Avoo lea mbms valeura de 0( et 0 qua pr~c~dement, F eat una foaction hyperg~ointriquet

F Wa bt, ot V). Ici il convient d' adopter z /y 4 . On trouve alors

pour O(1 at

Ct 'l 4 ~yV4-+- Arfy)T

pour C( SL t
& Y-4

Y-4 b t Z

Valeu re do 4 correspondnt h fn( )

La d6rivde do fn a pour expression

t -c) -(,g.F + r [M((4 -TilrF&

avo Fr *6Fa4 ,C4 .

On adopter pour la partie imakinaire do lterpreaaion (13): 4 sr

at pour Tf la partie imaginaire de l'expresaion (14) a zf c( .)n

at on 6orira Cf ~~ Cos he

avec 1(-c (4 ic

Pour a(=~ at0

r1aC. FRa,6,o, ) sin A

~= 9(~iE+ Fz]



Vaeours de co t jfcorresponidant h gn (r)

D'autre part 2 .()snn

-. P- (4 -t'y"4 [(4 -v')- o F - A(4 F

On 4crira i ~() Cos nf zvo ( = -

Pour cn- et

Le calcul des fonctions f, g, F, F, no prdsente pas do difficultda, les fonctiorns hypergdom~triquos
qui leur correspondent dtant convergentes. Un extrait des tables de ces fonctions eat donne en annoxe.

VAI.EUR DES COEFFICIENTS DES TER14ES DFS SERE EXPRD'lNT LE POTENTIE T L A FIONCTION DE COURANT
DES SIliGUIJRITES. le champ de la file do doublets-tourbillons tous de mgme intensitd, espac~s do 21T et
dent l'un placd en IOD reprdsente Is sIngu).arit4 correspondant h l'±nfini du plan physique, s'obtient
par d6rivation du champ d'uno file do sources par rapport h 0 auquol se superpose le champ d'une file
do tourbillons.

ghRdu 2baorca4sLnta4- rDaat -itl ( z:,., Z 41T). On so propose de ddterminer
uno solution formde par deux 96ries de fonctions do CHAPLYGIN fn ot gn ddfinies prdcddemaent, respec-
tivement valables pour r, <C, et 1;> -,. *Les relations ontro lea coefficients des teo'mes de ces
sdries sont ddternmindes do manibre h assurer leur raccord sur IC =Co et Ia reprdsentation convenable
du potentiol. et do Ia fonction de courant do ces sources. Pour 'C 4 Z;,, lea fonctions fn , fn dtant
rdgulibres, le potentiel et Ia fonction do courant sent donc expriads par

a, f 4(z) c~s n (r 14n
Pour rt> 'Co, au contraire, le potentiel et Ia fonction do courant sent exprimds par lea sdries
do FOURIER: .

Ri. LEGENIDRE a sdmontr4 queo? dtant uniforme, Ia condition do raccord ontro lea doux solutions pour
Sstdcrit simplement

Pour C Z= V, est continu si 0 0 2 klT et crolt do 27V au passage do chaque aingularitd IK
9 2bw). La diacontinuatd correspondante eat oxprinde par Ia fonction ESCOLIER

Tr + + s~no

Il en rdsulte quo lea coefficients bn et an ,assurant cette condition, satiafont lea relations

Par suite:

Champ_ d'un ile do tourbillons espa do 2 )T *On pose comae dana le cas prd6cddont%

pour >(~

Dons ce problbo, la fonction de courant eat continue on IK et lo potentiol y subit une discontinuitd
do 2 IT
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Un calcul analogue au prdcdnt donze alors lea valeurs doec et dn

CHAP DIUN FIIZ DE DOUBLWS-TOURBILMNS DE ) IllTE!3ITE SITUES SUR LIMX C ET,.F ASSURAIW
LL CONDITION DE FEf TUR PU PROFIL. La champ duno ligne do doublets eat obtenu par ddrivation par
rapport h 0 du champ do sources pr6c~dentt

Le potential et la fonction de courant do Ia ligne de doublets-tourbillons sont alors ddfinis par lea

relations suivantest

pour V <t r, 0

If = - %0 64 " + '0Z4(ts,6 .~'T
T A-4

Pour~~ 3!dir liporanc dos focinompdetie Z C'. at) Co noR EEDEasgr iespr
peonme pruan >tr utted "arm of iutnmn.X ea npriuir vnaax

d~~finies Ieron +lr rempa)ow pJ

Pour ladi loimpa dosfncin compresblt oCA LYGIntafornie proir apRoxIEatn d la pog6disitrtv
deona,.eCta posit dt stisares coarmnto siutnet.1sraenptcle, vtgu

cequ ndtr t pasge u oidr obrdliiecSacscodtions noslscacd usuent a reampl~isle prcalcujen dui
capdo ldcoulloot ernt rlerids our qiqus poii etoI osn o apsto rm ntr

dterin snt alo s o rdonnd es par 8,,. dun n point I

POSIION E L SINUL IE AN LEUVRE DE CAIS OGAPH DFE~E ChR DIM e acl rlmni

pourTla? D' i HdeGAS Hopesblt o CHpr IN 1' orn n pe approximation do CHPY-Npu n ig la. pitio relative,

don dco gasrdo. position do asinlarciti 0 osin dot ~ otaoadni~ orsts

velursddfniav u do d~=' e surl cotu o oorpe a o dte i roi

p9ar int graon. Cou calcu dennardn ea corectioncs c otr mu pofi dus rplns physqlu dun
dama de approimtio don repLYI pour teuni s cot on ha oI, sn do st position rs n

POU D VLEIRSPHc., dffret do celscresodn 'hor0aph Hon dovrat daod faire
aubrxh h. ouorph ue pd~odti aio n r, lngmn our tonat uro) loatad muria o~=0

Un metd docfcidnilmns ot o ms.O tbr siu oul ranssoie rdemeibla autor du prof iotns
dernnt lpines ron~ z:t , ettli ve., riu parn R.LENDa tmsenouv.Cttmtho

apliableN DU Hds& Hese d'oorafih nor c~pomon pdo CHAP1'INdrour dun champultile ,A (uro I-
rinso qpaopois du poerintr n linfii dan l plan physique oadmt gu pare 10 oidogahr danaltunueen

halparti prfinipala do cotto I ui 8lt at sri onr di ea mhodospeo oun driquos a dIsfroefinis
pau analoio. Cos calc d onction rlibosDn cottshaptoe a prol tr an hysique oat rm-

plad r u probograhm uoniqure dent a tion ot prolonealae dam oain auosoniqu dodd= 0
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Lee calculs en cours Wiont pu encore abouir h des rdsultats concrets dam le, coo d~un 6ocixlement do
fluid., satisfaisant & Is lo± do compressibilit6 exacte.

Li's 4quations des hodographos propoaes dama l'bypothbs dui fluide fiotif do CHLPLYGD( pour sorvfr do
base au calcul exact ont dt6 6tablies et rdsohues num6riquoment ; lea vaeurs nmmrique3 des prircipalee
fonctions auxiliaires n6cessaires I la d~termination d'un 6coulcoent qualcarique, correspondant A la, lii
do compreuibilit4 exacte ont Wt walcul~ss.

M. LIGHTHLL -

On the hodograph transformation for high speed flow.

Q uart. Apple Math. no 9 - 1951

R. IZGEHDRE-

Singularitds critiquies do l'hodographe.

C.R. Anad. Sc. T. 244 - 1957

R. LEGNE -

Calcul do profile pour turbo-machines transsonique.

Progr. in Aer. Sc. - 1960

G. IMUNID -

Transonic potential flow around a Family of quasi elliptical aerofoil.

Seotion N.L.R. T.N. 172 - 1967

Re LEGENDRE-

Singularit4 do l'hodographo do 1' dcoulement reversible d'un fluide compressible
autour d'un. profil portant.

C.R. Acad. Sc. -tome 266 - 1968
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ANNEE I

NATURE DE Lk SINGULARITE AU POINlfDMEG I DU FUNi PHYSIQUE - CONDITION DE FEPMURE DU PROMI

Si l'on adopts lea variables hodographiquea cr et e ,Is fonotion. ('- courant satiafait la relation

+avec __

Au voisinage de I a' oT tendent vers lea valeurs comas C,, et a~ t

Aprbs Ie changment do variables 0O =FiO 1'4quation do la fonotion. do courant devient la im ite
T -b, Ce la relation hLtauoniqua

140*+fe 0
la singularit4 la plus simple permettant d'obtenir un hodographe sans poin~. critique dans la partie
utile set alors un doubiet-tourbillon, dont Ie potential complexe eat, au voisinage do I, en posant

F A + B _ LC& T:)

Le potentiel complex. ?I du doublet sa dcrit on coordonndes polaires locales

4 1& Is-t.i

Le potential cooplexo du tourbillon at do n~me

F C [Lt.a.& + t]

Pour IL at Q infiniments petits, ia correapondance entre le plan phyaique et Ie plan do l'hodographe

at fournie per A

Ls variation do correpondant au doublet our Is irconfdrence do rayon P&. ayant le point 10 come

centre eat t

= ~ [~c~o-A Asuial - (~~) Bsin o+ A ceo

Au parcours do la circonfdrance do rayon Z~ du plan do 1' hodographo, correspond, dana le plan physique,
un acoroissoment obtenu on intdgrant Ia pr~cddente relation:

La contribution du tourbillon h l'accrol'asednt do eat tZT

La condition do fernoturo du profil impose + =0, soit

4

A 0-"+O
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-Annexe 2-

TABLE ABREGEE DES FONCTIONS
ET DE LEURS D9RIVltE5

R&

K0. 0.0CCCC03 0.'CCOHOOE.0l 0

0.500OOEi0C1 O.939CS270E,00 0.ICCOOOOL.O 0.2099?6SL-00 0-313121IIE-01 0.1834120't 01 -0-511 4O? 01 $#C,136665

o~oco~o-o 08 71109[GC O .CVO:OOcOE*C c .2?87?O TE: .21:&,qa. 0.1036746Z(.CI -0.1943MIaE.c

0.15~~00C C 86Z44EG 0.ICOO * 0 2:02:51E-O 0.1I4 1 9 o0i .6S315216E.Co -. 1826(0 ~~
0.20000"-DE-00 C.7T'.16106ECC .ICCOOCOCE.01 C.3463051SE-00 0.10Z40001C0O1 0.41423722C.00 *0.70OIC0E*01

0.250000COE-OO 0.72510922E.00 0. ICCOOCCOE.C1 C.36Z65460E-00 0.73010904(#oo 0.Z48963;4?c-00 -0.40131336E401 C, ~33

r2

C.0.100000000.O1 0.52710509E-01 0. M.IOO=OCEO V l o

:.5:000C0E-C1 0.8803SA?3t::0 0.74319671E-01 0.4401:3::E-01 0:12421282E:01 0.766:7:13E:00 -0.21453016E#02 0,042Io6
C.1 000.0 00 1.7216ME.C 0.cl r0868- 0 0.71 5 1It~-01 0.69208 9 9E00 0.so c ou E00 -0.SITISME60.1 ,62V
0.150000COC0 0.672CC392E-00 0.129756911-00 0.10060059E-00 0.4s97849&C-00 0.36879689E-00 -0.29190919E#01

O.Z00D3OO'O-00 O.S8Z22001E*CO 0.16265942E0-0 0.1164S0000-03 0.37244676E-00 0.24150CO11-00 -0. 191387?EOl ,1 7

C.2500CCE-C: c.501464e6E.Co 0. 19857453E 00 C. 12536621-00 0.29020042E-00 0. 11914.064(-00 -0.14230023E#01 o,072550

n=3

0. 3.10CC00000.01 -0.1Z23318.... ..- 0. _ -0, co9

o.SOOODnOC~OE- 0.sz2asiSo-oo -0.165193?0E-CZ 0.12216204E-02 -0,12392121(-00 0.24014933[00 0.362692?$500 -lols

0. IOOOOCCOC-OC 0.612e58c4E.Co -0. 17679142E-02 0.212?1640E-01 -0.386642800-01 0.229q86806-00 C.647680.O0 -O o 12
0.SCO.VOE-00 6.5421415SS*C0 *0.SIC0'341(C) 0. 3149110-01 -0.80830088E-02 0. 1746649at-00 0.442393?SE-CO - 0) Ooff41

.:0C000000E-O3 1.43073460E-00 0. 1605052602 0.38526015f-01 0.92418699E02 0.180576939C-00 0.24240299E-00 + 0 o1~C2.is

0.25COO'CO0-0 O.33576180E-C0 0.10609SOIC-02 0.420952221-01 O.20638089C-01 O.379300070.0L 0. 1785627GE-O00 vo

Z:FC.,vo ) rw'4ev) f ;) 0..tr.N

0. 0.10000000.C -o.14&42090-4 0. -A 0.A=- 0,0D0430q

O.500003"00-01 0.772454E00 *0.21006922C-Q3 0.19)1 12151.02 -0.728931970-Ol 0.66941776E.01 0.20052630E-01 -cCoMl2

o.IcooogooDE-00 0.559c0114E.00 *0.441327341-03 0.58600o11t.02 -0.338120t-ol 0.a3654052E.01 0.27375161E-00 -, to,0e333
.107C0 0 .4352640SE-C0 -0.1(19013&C-02 0.919344100-02 *0.25642702E-01 0.70022M3-01 0.81211266E-01 01 too P7

O.2300CC-0 .352160-I 0.12915[-2 . 240850Ol-0.220726170.01 0.411700760-01 0.651769721-01 Ojvf

0.25730 00-00 0. 22146519t-C0 *0.3188412SC-02 0.138416101-*1 -0.1663841$E-01 0.80691474E-02 0. 74643104[-01 v 1/01~I

0. .ICCCOOv00.CI 0-130171-03 0. 0. 0.0 FOU
0.037~EO .72325,o3310.3 0.11950036C-03 O.4043M371-03 0.1026%9686-00 0.11491663E.01 *0.9629092SE.01 + bOcot~96

0.100000,01-.0 u.sO97I*4zE.;3 0.11040ME2-0) 0.16120926C002 .2048 ?20-01 0.2855106St-oI -0.61880014!'00 + 0wo got

C.15400000-00 U.34832'.24E-00 0.209'056t-03 0.301S3716C-02 0.132S0316-01 0.2638085 01 -O.15526822600 4
0.20000000C-00 0.2 995SOE-00 0.29341296E-03 C.40963961[-02 0.IS113723E02-Z .l49l2160-0 *0.9CO53Z8SE01 + A/0001344

0 .4700000O-O0 0.143230j80-03 0.30955%bE-03 O.4.3615700-O2 0.351853191-02 O.6148104320-04 -0.713082701-01 + 0 Wk 70
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AN EXPERIMENTAL INVESTIGATION OP UNSTEADY TRANSONIC FLOW BY HIGH-SPEED

INTERPEROMETRIC PHOTOGRAPHY

G. Meier, W. Hiller

Max-Planck-Institut fUr Strdmungsforschung, Gdttingen, Deutschland

Introduction
Some years ago we succeeded in realising a shockfree transonic flow experimental-
ly (Ref.1). This was a plan, flow in a curved channel having a supersonic region
imbedded into the subsonic flow. The channel boundaries are streamlines of an
exact solution of the basic gasdynamic equations. This solution describes the
compressible flow around a half plane and has been obtained by a Molenbroek-
Tachaplygin transformation (Ref.2).

The experiments showed that the continuous compression of the supersonic flow is
relatively stable against pertubations. When the flow speed is decreased
continuously the supersonic region will continuously become smaller. In this
velocity regime the supersonic flow is also stable against pertubations of the
channel boundaries (Ref.1). If on the other hand the design velocity of the
channel is exceeded shocks will be generated at the downstream end of the super-
sonic region. The flow will then in general become unsteady.

Instrumentation
Some of the streamlines of the exact solution are shown in Fig. 1. The chosen
boundary streamlines are emphasized. The supersonic region fills one quarter of
the smallest channel cross section. The largest velocity is taken on at the
vertex of the convex boundary ( M = 1.25 ), Fig. 2 shows a schematic drawing of
the channel.

A

Fig. 1 Streamlines of the transonic Fig. 2 Channel
potential flow, K is the maximum A suction, L pipes for suction
velocity on the streamline in m/s. P window, D control nozzle.
(--- sonic line)

The channel is driven by a vacuum chamber and is fed with dried atmospheric air.
The flow volume is controlled by a variable nozzle in which the flow is
accelerated to the velocity of sound. The boundary layer near the vertex of the
convex boundary is controlled by suction. In this part of the channel the wall
consists of polished sintered sheet metal. The open area ratio is o.o5
approximately. Typical values for the suction velocity are 1-3 m/sec.
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The flow field is observed with a Mach-Zehnder interferometer, Fig. 3. The side-
walls of the channel in the area of interest are windows of a high optical
quality. At the beginning of every experiment the interferometer is adjusted to
infinite width of the interference fringes. Thus the interference fringes will
be lines of constant density in the photographs to e shown. As long as no
entropy changes occur all the variables of state will be constant on the
interference fringes. It may be interesting in this connection that the lines of
constant variables of state in the case of the exact solution are circles.

-- -l .-- Pig. 3 Equipment for high speed
interferometry
I-IV Mirrors of Mach-Zehnder
interferometer.
Drum camera

---- WIElectronic equipment
" w fw Flash light source

The unsteady flow is registered by high frequency cinematography. As a ule the
frame frequency will be lo kHz. Exposure time for a single frame ie lo- se.

Results
comparison between an interference mapping obtained from the exact solution

and a photograph of the flow field under optimal conditions shows the degree of
agreement between the theoretical flow field and its experimental realisation,
Fig. 4a, 4b. If starting from this steady shockfree flow the velocity is increas-
ed weak shocks will be generated at the end of the supersonic region, Fig. 5. As
may be seen from the photographs these shocks are unstable with respect to
location and strength.

Pig. 4a Calculated interference fringes Fig. 4b Shockfree transonic flow.
Numbers indicate velocity in Velocity in the vertex of
in/s (T = 20 C) boundary M = 1.25Plow direction from left to

right

Fig. 5 Weak unsteady shocks at the end of the supersonic region.
Flow direction from right to left.
Interframetime t = 0.4 me
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Further increase of the Mach number leads to stronger shocks, Fig. 6. The pres-
sure Jump at the foot of the shook will become so large as to cause the boundary
layer to separate. The rapidly growing dead water bubble behind the shock will
cause the pressure behind the shock to rise and the shock to move upstream. The
point of separation of the boundary layer will move upstream together with the
shook. The shock strength will decrease during this phase and the shock will
reach areas with small pressure gradients. The flow will therefore become attach-
ed to the wall again. The dead water bubble floats downstream. The velocity of
the flow field now has a minimum. Thus the shock will be dissolved completely.
In the following acceleration phase the supersonic region will grow again. As
soon as a certain Mach number at the end of the supersonic region is exceeded a
new shock will form.- The whole circle as described will repeat in this example
with a frequency of 18o Hz.

1 6 1171

Fig. 6 Full cycle of an oscillation of unsteady transonic flow.
Mach number at the vertex of boundary Mmax = 1.4 ; Mm n = 1.2
Plow direction from right to left
Interframetime t = o.4 ms
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At greatly reduced suction the boundary layer will be induced to separate even by
very weak shocks, Fig. 7. The vibration cycle will be qualitatively the same as
in the previous example. However the shock at the end of the supersonic region
will be dissolved into a system of compression and rarefaction waves and will
move on the separated boundary layer. The frequency is 21o Hz in this case.

Fig. 7 Full cycle of an oscillation of unsteady flow with reduced suction.
Flow direction from right to left. Interframetime t = 0.4 ms.

We have studied the influence of the channel geometry, the boundary layer suction
and the flow volume on the frequency of the shock vibrations. One result is that
a decrease in the distance between supersonic region and flow control nozzle,
decrease of suction and increase of flow volume cause the frequency to rise. The
measured dependence is shown in Fig. 8. The frequency is plotted versus the

Fig. 8 Frequency of flow oscillations
f (D plotted versus suction pres-

5o Qsure
Parameters: Length of the duct

, between verte of boundary and
diffusor 1 - 5 relative

40C change of flow volume in per-
cent.
--- transformed frequency

ranges
(D % In 1 excitation of harmonic

- \ Ioscillations

_Q5 03 Q10 Q3 , Q3 t



i

9-5

auction pressure p /p for five different locations of the diffusor, curve para-
meter is the relatveochange of flow volume in percent. Vibrations have been
observed only for those values of the parameters covered by the curves. The
vibration regimes for the five different locations on the flow control nozzle
may be brought to coincidence by the transformation given in Fig. 8(dashed curve)
This transformation results from the depende..ce of the eigenfrequencies of a
resonator carrying flow on the length of the resonator. The part of the channel
between the supersonic region and the flow control nozzle obviously acts as such
a resonator, determining the vibration regime to a great degree. Even the excita-
tion of higher harmonics has been observed for a very large length of the reso-
nator.

The essential element of instability and vibration generation is however the
separation of the boundary layer coupled to the shock. To support this argument
the wave propagation in the channel has been investigated. To this end the time
dependence of the density has been inferred from the interferogram for
approximately fifty scanning points. An example for such a time sequence is
given in Fig. 9.

m/

AI 5 mA

4 _ _ _ _ _

2l

3 6 9 12 15Z t FI

Fig. 9 Density in four scanning points Fig. lo Example for cross correla-
plotted versus time. tions between density time
Density is measured here by the sequencies. Phase shift is
order m of interference fringes indicated by the displace-

ment of the curves

By cross correlating these time sequencies phase relationship for the density
waves in the flow may be obtained, Fig. lo, leading to a so called phase plan.
Here the lines of constant vibration phase or wave planes are plotted. Fig. 11
shows the phase plan corresponding to the unsteady flow shown in Fig. 7. This
indicates that the wave centre is in that part of the flow, where the boundary
layer is induced to separate by the shock.

Fig. 11 Phase plan
Wave fronts or lines of constant

Phasenplan phase for the flow shown in

Fig. 7.
/ All cross correlations refer to

the time sequency of point 28

,!4'
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Special effects
At greatly reduced suction the boundary layer remains separated permanently,
Pig. 12. The shocks at the end of the supersonic region then move on the separat-
ed boundary layer, which reflects the shocks as rarefaction fans. In this rare-

0faction fan the flow again expands to supersonic speeds. This supersonic region
in turn collapses into another shock. Thus a.sequence of shocks is generated,the
first of which influences the point of separation of the boundary layer and
causes the flow to become unsteady.

1 5

<'Z.11

Pig. 12 Unsteady behaviour of the flow when boundary layer is separated
permanently.
Suction is reduced considerably. Plow direction from right to left.
Interframetime t = o.1 ms

At very large flow volumes strong X-shocks may be observed, which penetrate deep-
ly into the subsonic region while moving against the flow. As soon as the foot of
the shock comes to rest the shock is split into two. The unsteady part moving'
further on against the flow leaven benind it a nearly steady normal shock,Fig. 13
This may be explained as a strong reflection becoming especially apparent in the
next example.

To investigate the behaviour of the unsteady shock, we generated a shock by a
wire explosion in the downstream part of the channel, which moves into a steady
transonic flow, Pig. 14. The behaviour of the shock may be described to great
extent by geometric acoustic model given down below. In contrast to this model
the reflection at the convex boundary is given initially in the form of a normal
shock. This strong reflection does not last however. The part of the shock moving
forward and becoming weaker is now subject to weak reflection and separates from
the strongly reflected part.
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*Pig. 13 Splitting of a shock wave
Mach number in the vertex of the boundary Mma = 1.5
Flow direction from right to left
Interframetime t = o.1 ms

1 7

Fig. 14 A shock wave enters a steady transonic flow.
The shock is produced by an exploding wire.
Flow direction from right to left
Interframetime t = o.1 me
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For another sequence of photographs the different locations of the shock have
been superimposed into one single figure, Fig. 15.

Fig. 15 Positions of a shock wave at
different times( t = o.1 ms)
Flow direction from right to
left.
Motion of the shock from left
to right.

Z ... sonic line
- reflected shock

It is noted that the reflected part of the shock takes on the same position at a
later time as the forerunning part. The fact that two parts of the shock separate
may be explained by a difference of their respective components of speed of
propagation in the direction of the flow and by the decrease of flow speed along
their paths.

Apart from the splitting process however the propagation of the shocks is in
accordance with a geometric acoustic model. Fig. 16 shows the calculated propaga-
tion of a pertubation situated initially at the vertex of the known flow field.

},&<_

g - , , / ....SI wg, .ff *n.. ........ ....

Fig. 16 Calculated motion of a shock. Fig. 17 Calculated motion of a shock
Geometric acoustic model. Geometric acoustic model
Initial position of the shock - shock and reflected shock
is the vertex of the duct. --- direction of phase velocity

-.- direction of group velocity
... sonic line

vertex line

It is seen that the pertubation initially moves downstream in the supersonic
region, until it takes on the Mach angle and may propagate into the supersonic
region. It must not be concluded however that energy may be transported upstream
in the supersonic region. Fig. 17 shows for a different initial position of the
pertubation in addition to the orthogonal trajectories giving the direction of
propagation of the wave two dot-dash lines, the direction of group velocity.
This makes clear that energy propagation has a strong component in the direction
of the shock. This at the same time explains the rapid decrease in the strength
of the shock during the propagation, Fig. 14, and the initial increase of the
strength of the initial shock.
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I ation of unsteady motion in transonic channel flow is studied experimen-
tally. The starting point is a steady shockfree transonic flow corresponding to
an exact solution of the gaadynamic equations.

Changes in flow parameters generate shock waves causing a more or less unsteady
behaviour of the whole flow field. The essential element of instability is the
separation of boundary layer coupled with the shock formation.

The flow is recorded cinematographically by high speed interferometry. The frame
rate is lo kc/s. Characteristic modeL of flow oscillation are shown in a motion
picture.

The evaluation of the recordings by statistical-numerical methods gives the
frequency of oscillation, the propagation of density waves and the origin of xhe
waves. An interesting result of a direct visual evaluation of certain pictures
is the splitting of the shock waves under special flow conditions. The propaga-
tion of weak unsteady shocks is in accordance with a geometric acoustic model.
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INTRODUCTION

Use of the inviscid transonic equation coupled with the treatment of shock waves as Rankine-
Hugoniot discontinuities sometimes leads to paradoxical results or solutions which disagree with
experiment. These difficulties usually arise when large velocity gradients, discontinuities in
streamline curvature, or highly curved shock waves occur, so that viscous effects cannot be ig-
nored. Such viscous-transonic problems have received increasing attention in recent years, and
form the subject of this survey. After briefly discussing some difficulties of the inviscid theory,
the development of the viscous transonic equation is given followed by a discussion of applications.

Starting with the early work of G. I. Taylor (1930) studies of the transonic flow near the throat
of a converging-diverging nozzle (Grtler 1939, Emmons 1946, Tomotika and Tamada 1950,
Ryzhov 1963) indicated that the inviscid theory cannot explain the smooth transition from symmet-
rical or Taylor type flow with subsonic velocities both upstream and downstream of the throat to
the fully developed subsonic-supersonic or Meyer type of flow. Another difficulty of old standing
arises when a weak shock wave is adjacent to a curved surface. Then Emmons (1946) has shown
that the Rankine-Hugoniot conditions may lead to infinite streamline curvature where the shock
touches the surface. Emmons tried to remedy this problem by introducing a sudden Inviscid ex-
pansion immediately behind the shock, but gradients of velocity and temperature within this expan-
sion are of the same order as in the shock layer itself. Hence, Emmons has suggested that a vis-
cous theory may be required to properly deal with this portion of the flow. Of course this problem
is in some sense an academic one for a boundary layer must always be interposed between the
shock wave and the wall and would be expected to influence the flow. However experiments (Sinnott
1960, Pearcey 1964, Holder 1964) do indicate that the pressure rise across the shock terminating
a pocket of supersonic flow at the sirface of a transonic airfoil may be appreciably less than the
Rankine-Hugoniot value. It seems reasonable that the difficulties observed by Emmons (1946) and
these experimental results are related to each other.

In the analysis of the Mach reflection of weak shock waves use of the Rankine-Hugoniot condi-
tions at the triple point leads to results in serious disagreement with experiment. To deal with
this problem Sternberg (1959) introduced a region of non-Hugoniot flow in the neighborhood of the
triple point which permits an adjustment of the shock structure from that of the incident and re-
flected shocks to that of the Mach stem. A global analysis of this viscous region in which the
shock structure is no longer one dimensional results in reasonable agreement with experiments.

Limit lines, where the velocity gradient becomes infinite also occur near the sonic circle or
sphere when the Inviscid equations are solved for the classical problem of compressible source
and source-vortex flow (Taylor 1930, Von Mises 1958), and the neglect of viscosity in such re-
gions is clearly inconsistent.

A viscous-transonic theory to deal with such problems has be.n gradually developed over the
past two decades and forms the subject of this survey. The theory is in effect an extension to two
dimensions of Taylor's early (1910) analysis of the structure of weak shock waves. In this survey
no attempt is made to study viscous phenomena within the boundary layer, rather attention is
limited to the theoretical description of viscous effects in the external flow.

THE VISCOUS TRANSONIC EQUATION

In view of the above discussion It is apparent that there are numerous transonic flow problems
in which viscous effects must be considered. Szaniawski (1962) has given simple qualitative argu-
ments showing the importance of viscosity In transonic flow. In transonic small disturbance flow
it can be shown (Guderley, 1962) that the perturbation potential 0' satisfies the approximate equa-
tion

(+ 1)q' 0~ '+ 4(1
x xx yy

*Profc ssor of Aerospace Engineering.
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where D represents the dissipative terms. Now - (y + 1) O' Oxx' (1 - M2 ) x and when the
terms (1 - M2) Oxx', Yy, and 0 in Eq. (1) are compared, It is usually found that 0 is negligible
compared to the other terms. However, as M - 1, (1 - M2) Oxx' vanishes but D need not vanish,
so domains Omust exist in which (1 - M2) Oxx' ~ O(0), and where the dissipative terms (D cannot
be neglected. The Interior of a shock wave is an important example of such a domain. If the
domains .--'are small compared to the region of interest, so that they can be regarded as surfaces
of discontinuity, then the neglect of D may be legitimate. The thickness, %1, of weak shock waves
(Ltghthill 1956) is of order it1p* a* (Ml* - 1) and so can be quite large as the upstream Mach num-
ber M1* - 1.0. Hence, the region o'/in which convective and dissipative effects are comparable
may be very large. Even when+' is very small amplification may cause the viscous phenomena
within -O'to exert an Important influence on the overall flow. Thus, viscous effects IneOmay
through their influence on jump conditions determine the position of the shock terminating a region
of supersonic flow.

A viscous-transonic (V-T) equation was first derived by Liepmann, Ashkenas, and Cole (1948),
and was later rederived independently by Ryzhov and Shefter (1964), Sichel (1962, 1963), and
Szaniawski (1962, 1963). In the derivation presented here steady flow of a perfect gas with con-
stant specific heats, viscosities, and thermal conductivity will be considered. Variation of the
thermodynamic properties is taken into account by Sichel (1963), Szaniawski (1962) and Ryzhov and
Shefter (1964), but there is no material change in the results. The critical or sonic values of the
flow parameters will be used as reference quantities, and it will be assumed that the undisturbed
flow is In the x or axial direction.

From the method of characteristics (Guderley 1962) for inviscid flow or from the transonic
Hugoniot conditions across shocks it follows that perturbations in the dimensionless quantities
T/p* a*2, N/a*, 'T/T*, and 7/p* will be of the same order as the deviation of the dimensionless x
or axial velocity component U/a* from the reference value of unity. If [ (./u*) - 1] ~ O(E); where
c « 1, these flow parameters can be expanded as

u=((/a*)= 1+)u() 2u(2)+... p(p/p* +Ep(1)+.

p = p/p* a*2 =(1/.) + Cp1 +... T=T/T*=1+cT(1) +... (2)

a=a/a* =I +ca +.. ,

'Barred quantities are dimensional and reference quantities are indicated by an asterisk. The
transverse velocity, v = V/a*, is expanded as

v=v/a*=(v(1) 2 (2)
V=Va (Cv +C v +. . )(3)

If the disturbance is caused by a slender body then it follows from the characteristic or oblique
shock relations that A - 0(c1/ 2). In a normal shock, on the other hand, v and hence A are equal
to zero. From the method of characteristics or the oblique shock relations it can be shown (Sichel
1963, Guderley 1962) that if L is the characteristic length of the problem, then

x=x/L ; Y = y A/L (4)

are the appropriate dimensionless coordinates.

Introducing these expansions and coordinates in the Navier-Stokes equations and keeping only
the largest terms yields the partial differential equations

px(1) + ux(1) = 0 continuity (5)

ux(1) + px(1) = 0 x or axial momentum (6)
(1) +y(1) =0yo

vx + Py 0 y or transverse moi.aentum (7)

- (), - 1) px(l) 0 energy (8)
Yp(1) p(1) + T(1) perfect gas (9)

Assuming uniform upstream entropy, Eq. (5), (6) and (8) can be integrated to yield the equations

P(1) + u(1)= 0 ; u(1) + p(l) = 0 ; T(1) - (Y -1) p(1) = 0 (10)
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which are identical to the relations between P(), P), p(1), and T(1) in a leftward propagating
acoustic wave. Using Eq. (10) the y momentum Eq. (7) reduces to the irrolationality condition

u x(1).- v y(1) = 0 (11)

Since entropy changes are of higher-order in transonic flows and stagnation enthalpy is assumed
constant this result could also have been derived from the Crocco relation.

Equations (5)-(9) are five equations for the f ve unlwns p(), (), v(1), T(1), and p(l); how-
ever, since from Eq. (5) and (6) it follows that p L' = p' the equations of state and energy are
identical so that the set of Eq. (5)-(9) is redundant. The second order equations are redundant in
p(2), u(2 ), v(2 ), and p(2 ) and upon eliminating the second order expansion coefficients the following
equation relating u(l) and v( 1 ) is obtained (Siche! 1963, Ryzhov 1965)

1 V1-A (1) ( )(1) (1) 2 (v (1) _ k-I v(i= 0  (12)
Re (Pr"I/uxx + U 1 yx y /

Together with the irrotationality condition (11) this system is sometimes called the viscous-
transonic or V-T equation. Re is the Reynolds number p*a* L/1-", Pr" is the Prandtl number,
T1 = (4/3) 1! + j7' is what Hayes (1958) calls the longitudinal viscosity. T' is the bulk viscosity.

The integer k equals two in axisymmetric flow and unity for two dimensional flow. From the
method of derivation V-T flow might be considered as an acoustic wave with structure determined
by higher order viscous effects.

From the definition of the shock thickness i it follows that (e Re)'1 - O(tI/L) so that the vis-
cous term in Eq. (12) will be of 0(1) whenever L and i} are of the spane order. In. two dimensional
transonic flow it is, as discussed above, appropriate to let A = e1/2, and then all three terms of
Eq. (12) will be of equal importance. In one dimensional flow A = 0, and then the ordinary differ-
ential equation which is left has as one of its solutions

M =tanh (v + 1) (E Re)x (13)

2 (1 + -

which is identical to Taylor's (1910) solution for the structure of a weak shock.

When (ti/L) or (c Re)- 1 << 1 a singular perturbation problem arises with respect to Eq. (12).
With A2 = c the flow should satisfy the inviscid transonic equation

- (V + 1)u u x(1) + vy(I) + [(k -1)/y] v(I) =0 (14)

except for thin viscous regions with a thickness of order i1. The singular perturbation nature of the
V-T equation may account for some of the difficulties of Inviscid transonic theory. A key question
which should be posed in all cases is whether solutions of the V-T equation approach the inviscid
solution as (t7/L) - 0.

The coefficient of the viscous term in Eq. (12) can also be written as

6/a* L c = (Re6 )-

where

S(Y -1)K
+p* *C~

is a quantity which Lighthill (1956) calls the "Diffusivity of sound", and is the combination of trans-
port properties governing the attenuation of sound waves. Re6 Is a Reynolds number based on 6,
and appears more appropriate than that based on just i" With A2 = C the transformation

(1) 1X=(Y+1) c Re x 2 U

[i] 3/2 ev( 1) i+1)/2
Y = .1(7+1 cRe, y =- ( V
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reduces Eq. (11) and (12) to the normalized form

UXX UUX + Vy + [(k - i)/Y] V =0 (15)

Uy=V

in which the properties of the gas do not appear. Equation (15) together with appropriate boundary

conditions expresses a viscous-transonic similitude (Sichel 1966) closely related to t!at of inviscid
flow (Guderley 1962). In terms of the potential defined by U = Ox, V = Oy, Eq. (15) can be re-
placed by the V-T potential equation

XXX - @XOXX + Oyy + [(k - 1)/Y] Oy 0 (16)

Keping only the largest terms in the energy equation the dimensionless entropy S = S/Cp,
with A = E, satisfies the equation

Pr" c = C (n/L) T  (17)

If (i7/L) - 0(1), Eq. (17) implies that

2 (2) 3 (3)
S=C S +C S

is the appropriate expansion for S. Equation (17) is an entropy transport equation which yields the
result, S,(2= 2(2) , when integrated across a weak shock. Subscripts 1 and 2 refer to upstream
and downstream conditions. From the equation for S(3)

as (3) I 11 ( 2T(2 a ( -(1) 2
as r a ( +.- a N(18)

it follows that entropy production is of third order since (au(i)/ax)2 is always positive. These re-
sults regarding entropy are in agreement with weak shock theory, as they should be.

Perturbing with respect to a free stream velocity u /a* other than sonic the V-T equation be-
comes

u + 7(Yy (19)
(c Re5 "  xx 1 - ()+ 1) (B + P( ) ) x() C2 (y (1 +k Y-'' v(1)=9(

while the normalized potential equation becomes

Oxxx"2(B, ) OXX +  + [(k-l1/Y1 =0 (20)

In these equations B = £ -1 [ (--/a*) - 1], and u(1) = B + U(1) = B + kX When u(1) << B these equa-
tions may be linearized and the linearized potential equation

xx{ " 2B MX+ yy + [(k - 1)/Y] @y=0 (21)

which may also be derived by direct linearization of the Navier-Stokes equations, has been studied
by Rae (1960) in an investigation of viscous acoustics. From Rae's work it is clear the V-T flow
is closely related to the longitudinal viscous waves discussed by Lagerstrom (1964).

For both supersonic (OX > 0) and subsonic (OX < 0) flow the V-T potential equation (16) is
parabolic with the three fold characteristic, Y = const. This property is in distinct contrast to
the inviscid transonic equation (14) which changes from an elliptic to a hyperbolic equation as the
velocity passes from sub to supersonic values. The V-T equation is, thus, in some ways simpler
to deal with than the inviscid equation. A limited uniqueness theorem for the two dimensional case
gives some indication of properly posed boundary conditions. Given a rectangular domain

(X1 < X < X2, Y1 < Y < Y2 ), it can be shown (Sichel 1963) that if OX is specified on X = X1 ,
and if 0 is specified on the entire boundary (X = X1, X2; Y = Y1 , Y2) of the domain e, then the
solution of Eq. (16) is unique provided OX < 0 in I. It is significant that only one condition may
be specified on the boundaries parallel to the undisturbed flow just as in the inviscid case. Since
the mean surface approximation remains valid in V-T flow (Sichel 1962) a tentative conclusion is
that the boundary conditions which will represent a slender body will be the same as in the inviscid
case. Even though the V-T equation is parabolic it is interesting to note that 0 must be specified
over a closed boundary as for second order elliptic equations. The high order of the V-T equation
is responsible for this result.
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The mathematical behavior of the V-T potential equation is dominated by the terms OXXX and
Oyy; therefore, the linear equation

OXXX + .YY = 0 (22)

as well as Eq. (21) have been investigated. Partial differential equations of the type of Eq. (22)
have been studied in general by Block (1912), and by Dezin (1958, 1959). Detailed solutions have

been given by Sichel (1961), Ryzhov (1965) and Sichel, Yin, and David (1968). As mentioned above,
Eq. (21) has been studied by Rae (1960) and periodic solutions of Eq. (21) have been investigated by
Sichel and Yin (1967 ).

Higher order equations for u(2 ), v(2 ), etc., which are linear and nonhomogeneous, have been
formulated by Szanlawski (1963). In the case of one dimensional shock structure higher order cor-
rections to the Taylor weak shock solution (Eq. (13)) have been found in closed analytical form

(Sichel 1960, Szaniawski 1966a). Equations for unsteady V-T flow have been formulated by Ryzhov
and Shefter (1964). In the one dimensional case V-T flow is governed by Burgers' equation which
Is discussed in detail by Lighthill (1956); however, unsteady flows are beyond the scope of the pres-

ent survey.

EXTERNAL FLOW

~Determination of the jump conditions across a non-Rankine-Hugoniot shock wave terminating a

region of supersonic flow is one of the key problems in the study of external V-T flow (Pearcey
1964). While this problem remains unsolved some progress in the study of V-T flow past bodies
has been possible.

Some simple results can be obtained directly from the V-T equation. The structure of an
oblique shock which is simply a generalization of the Taylor solution (Eq. (13)) can be shown to be
a solution of the V-T equation (Pichel 1963, Szaniawski 1962). The angle between a transonic
shock and the y axis is of O(c 1/2) and thus can be set equal to a e 1/12 where a - 0(1). In a curved
shock a will vary with y, i. e. a = a(y); however, it can be shown that unless (da/dy) - O(e) or less
the oblique shock solution will fail to remain valid. This condition implies that ?/AS - 0( 2 ), I.e.
the ratio of shock thickness il to shock radius of curvature Rs must be second order in c in order
that the conventional oblique shock conditions hold (Sichel 1962).

Formal integration of the two dimensional V-T equation (15) with X held constant yields the
result

v x - 11/21 U2  -f vy dX + K (23)

where K is a constant of integration. Thus for constant X the V-T equation behaves like a Riccati
equation. This is a highly significant result since many of the solutions of the V-T equation dis-
cussed below reduce to the solution of a Riccati equation with different functions of the independent
variable on the right-hand side. In the simplest case, of the weak normal shock the right-hand
side of Eq. (23) is a constant. In the case of a weak shock with uniform flow upstream and with
c = (Ml* - 1) Eq. (23) yields the expression

0o

U(+o, Y)-[4 + fVY dx1/2 (24)
-C0

for the value of U downstream of the shock. In a normal shock V =0 and Eq. (24) yields the usual
Rankine-Hugoniot result U(+c4 = -2 or u(l)(+oo) = -1. In an oblique shock with the free stream in
the +x direction Vy < 0 within the shock and according to Eq. (24) U(+co, Y) > -2 as is actually the
case. In the shock terminating a supersonic region it appears reasonable that V > 0 because of
the wall boundary layer. Then if V decays with increasing Y, Vy < 0, and Eq. (24) predicts
U(co, Y) > -2 so that the shock pressure rise is less than the R-H value in agreement with the
numerical results of Emmons and with experiment (Sinnott 1960).

Failure of the R-H conditions to hold across shock waves evidently arises whenever the Rey-
nolds number based on shock radius becomes small and the condition 1,'Rs - 0(f 2 ) is an expres-
sion of this fact. A general analysis of non R-H shock waves, which may also arise in low density
supersonic and hyp2rsonic flows, has been made by Germain and Guiraud (1964). Although not
germane to the present survey, the measurements of flow near a hypersonic leading edge by
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McCroskey (1967) provide a clear indication that R-H conditions no longer hold when the shock
Reynolds number is low.

A desirable objective of any preliminary study of the V-T equation would be to examine the
effect of viscosity upon a known inviscid solution. In two dimensional or axisymmetric flow past
finite or semi-infinite bodies with sonic velocity at infinity FrankI (1947) and Guderley and
Yosihara (1951) have found that the asymptotic behavior of the flow far from the body is described
by self similar solutions of the Inviscid potential equation of the form

S= y 3n-2 F() ; =x/(v + 1)1/ 3 yn (25;

Investigation of the singularities of the ordinary differential equation for F() shows that the solu-
tion with n = 4/5 represents the asymptotic flow past a finite two dimensional profile while n = 4/7
represents flow past finite bodies of revolution,

To examine the effect of viscosity upon these inviscid solutions Ryzhov and Shefter (1964)
studied self similar solutions of the normalized V-T potential equation (16) of the same form as
Eq. (25), i.e. they assumed € = y3n-2€ (D) with = X/yn. For fixed t it then follows that the
terms of the V-T equation vary as

OXIXX' YY~ 3n 4 ) ; Q O (Y -2)  (26)

Equation (26) leads to the conclusion that for n > 2/3 the dissipative term 0)=X vanishes faster
than the other terms of the V-T equation as Y - oo, while for n < 2/3 the dissipative terms will be
comparable or greater than the other terms of the V-T equation with increasing Y. Since
4/7 < 2/3 < 4/5 Ryzhov and Shefter concluded that the two dimensional inviscid solutions with
n = 4/5 will not be affected by viscosity for large Y, but that viscosity may have important effects
on the asymptotic solution for axisymmetric flow with n = 4/7. A consideration of the Reynolds
and Peclet numbers Re = p*Ut/*"I, Pe = p*Uf/K* provides another explanation for these results
Ryzhov (1965). If the characteristic length I is tak,, au the horizontal distance between two of the
generalized parabolas t = const, then Re, Pe _ O(Y n -7) as Y - co. Thus for n < 2/3, Re and Pe
decrease so that viscous effects will be important thoughout the flow.

The freedom in the choice of n disappears in the V-T case, a similarity solution of the V-T
equation being possible only for n = 2/3. In that case, Eq. (25) implies that U y-2/3 f(),
V = Y-1 g(g) and the function f(t) satisfies the ordinary differential equation

f" + (4/9 _ f f) + 4/9 f + 2/3 (k - 2) (c -fg) 0 (27)

while

g = (2/3) (c - fg)

with c a constant of integration. Numerical solutions of Eq. (27) were compared to the Inviscld
similarity solution with n ='2/3 corresponding to the flow over the semi-infinite body Y = (8/3) cX.
For slender bodies with c << 1 the difference between the viscous and Inviscid solutions was
appreciable.

In the case c = 0, k = 1, solutions of Eq. (27) such that f remains bounded in -0o < < o and
that f - 0 as It I -co have also been investigated (Sichel 1961). Such solutions satisfy the mass
conservation condition .00VdX = 0 for fixed Y, and so may represent the asymptotic behavior of a
finite body. Compariso of these solutions with solutions of the linearized two dimensional, c = 0,
version of Eq. (27)

2f" + 4/9 2 f, + 10/9 4 f = 0 (28)

which arises !rom a similarity solution of the linear V-T equation (22) showed that the non-linear
term causes a marked difference between subsonic (f < 0) and supersonic f > 0) solutions and
completely changes the asymptotic behavlu of f as - o. It is, thus, clear that linearized V-T
solutions must be regarded with considerable caution.

Self similar solutions of the linearized V-T potential equation for axisymmetric flow have been

studied by Ryzhov (1965). Then the function f(4) satisfies

f"' + (4/9) 92 f, + (4/3) (n + 1/3) fV + n2 f = 0 (29)
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and solutions exist for all values of n. From the asymptotic behavior of this equation as If 1 -00
it is shown that n = 4/3 is the first eigenvalue for which f can represent the flow past a finite body.
In the case n = 4/3 the solutions of Eq. (29) are shown to be confluent hypergeometric functions.

The inviscld similarity solution for a free stream Mach number of unity must have at least
onediscontinuity at some value of 4 = 4s corresponding to a compression shock (Guderley 1962).
The key question of whether viscous solutions outside the shock layer approach the inviscid solu-
tion as Rea - oowas investigated by Szaniawskl (1966b) using the method of asymptotic expansions.
The flow was divided into outer regions upstream and downstream of the shock wave and an inner
or shock layer region, and ordinary differential equations were derived for the first order coef-
ficients of inner and outer asymptotic expansions. It is initially assumed that the terms in these
equations with the coefficient Rea -1 can be neglected everywhere as Rea - ca The outer solution
then becomes the inviscid Guderley-Frankl solution while the inner solution is clcsely related to
Taylor's weak shock solution. Matching is used to establish a composite expansion and stream-
line equations are obtained in parametric form. To this point the solution corrects the Guderley-
FrankI solution for the finite thickness of the shock layer.

The crux of the analysis lies in the use of the above solution to determine whether the terms
with Re -I as coefficient, which were dropped initip.lly, are really negligible. The Inviscid outer
solution is consistent in the two dimensional case since then the neglected terms do indeed vanish
as Rea - oo. However, in the axisymmetric case the viscous Re6 - terms are found to be of the
same order as the inviscid terms for sufficiently large lyI in agreement with the results of Ryzhov
and Shefter (1964). However, Szaniawski finds that in the axisymm tric case the inviscid outer
solutions will remain valid for Ix « < Re6

2 , y I « (4s3 Re6) 7/, a region which may be very
large for large Re6. But even when Re6 is very large the viscous terms may have an important
influence on the asymptotic behavior of the solution far from the body.

An approximate viscous transonic solution for the classical problem of flow past a wavy wall
has been determined by Sichel and Yin (1967c) following the method used by Hosokawa (1960a, b) in
the inviscid case. The normalized potential 0 is divided into a linear part O() and a correction g
such that = () + g. The potential 0(0) then satisfies the linear equation

OXXX M -2Bxx ) + 0yy(M = KOX(f) (30)

which is readily solved for the perfodic wavy wall boundary conditions. K is an appropriately
chosen constant and the linear so' tion enters in the equation for the correction g. Several approx-
imations then lead to the Riccati equation

B2

U0 -U -- - + A sin (X + 0) + C (31)

for u( i ) (X, 0) = Us, the X velocity component at the wall. The constant A and the phase angle
depend on the amplitude and frequency w of the wavy wall, and upon B while C is an integration
constant. Equation (31) can be transformed into the Mathieu equation from which it follows that
solutions may be diverging, periodic, or inite but aperiodic depending on the value of the constant
C. Physically meaningful solutions should be periodic with tht wall frequency, and this periodicity
condition was used to determine C.

The JI'.iscid solution of Hosokawa (1960b) and the V-T solution are shown in Fig. I for a
particular set of flow parameters. Hosokawa must introduce a shoc dscontinuity in his solution;
this is replaced by a smooth transition from supersonic to subsonic fl. 'v in the viscous transonic
case.

So far attention has been focused on flows in which the fluid decelerates through a shock layer.
Viscous transonic effects are also important in establishing the influence of viscosity upon a
Prandtl-Meyer expansion from an upstream uniform flow with M1 = 1. Very large velocity gra-
dients occur near the corner in the inviscid Prandtl-Mayer solution and here viscous effects must
be significant. This problem was investigated by Adamson (1967) using the method of matched
asymptotic expansions for both M1 1 and M I > 1. The flow was divided into an inner region
about the first Mach line and an outer downstream region. Since derivatives of the inviscid solu-
tion are discontinuous at the first Mach line, the effect of viscosity must be to smooth out these
discontinuities.

In the transonic, M 1 = 1 case the first order inner flow near the Mach line is irrotational and

satisfies the V-T potential equation (16). The similarity solution (Eq. (27)), with c = 0, first
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considered by Ryzhov and Shefter (1964), and Sichel (1961) is found to be the viscous transonic
solution which properly matches upstream and downstream boundary conditions. Thus Adamson
was also led to an investigation of the equation

f" - if' + 4/9 2 f, + 10/9 4 f = 0 (27a)

and in the corner problem the appropriate solution of (27a) varies as (_)5/2 as -c and as
42 as 4 - +o. The existence of such solutions is verified numerically.

To this point the boundary layer has not been mentioned although it is clear that consideration
of the interaction between the boundary layer and the free stream is essential for a complete under-
standing of the flow. The trouble is that this interaction problem is very difficult in both the in-
viscid and viscous transonic cases. However, the role of the boundary layer in viscous Prandtl-
Meyer flow has been considered by Adamson (1967) who found that when M1 > 1 the thinning of the
boundary layer near the corner will affect the flow more than viscous effects in the expansion
region. Although the matter Is not entirely clear it appears that this situation reverses when
M1 = 1 so that viscous effects in the expansion region will be the most important.

Bertotti (1957) indicated a possible approach to the transonic boundary layer interaction prob-
lem by showing that the boundary layer approximation remains valid at the foot of a shock wave
provided that the shock wave is sufficiently weak and that the boundary layer thickness is sufficient-
ly small. This Idea was applied to a study of the leading edge of the shock tube boundary layer
induced by a weak shock wave (Sichel 1962). In that case V < 0 and Vy > 0 so that, in agreement
with Eq. (23) the pressure rise across the shock was found to be greater than the R-H value.

An analysis of flow near a leading characteristic, considering boundary layer effects has also
been made by Bulakh (1966).

Much work has of course been done on the shock-boundary layer interaction problem, generally
based upon an inviscid, free stream flow with R-H shock waves. The present survey is not con-
cerned with such problems but rather ,ith the situation in which the boundary layer influences the
viscous structure of the free stream, and in this area the literature is sparse.

NOZZLE FLOW

Transonic solutions for the flow near the throat of a converging-diverging nozzle are of prac-
tical and theoretical interest. Conditions at the throat are required to start characteristic calcu-
lations for the supersonic part of the nozzle. From a theoretical point of view the nature of the
transition from wholly subsonic to subsonic-supersonic flow Is of particular interest.

Meyer (1908) first computed the potential flow near the throat of a nozzle with asymmetrical
subsonic-supersonic flow using a truncated double power series in x and y. Hence such flows are
often called Meyer flows. The solution, which is Indirect in that the velocity on the nozzle axis is
specified rather than the shape of the nozzle, yields a reasonable description of the flow. Much
additional work has since been done on the analysis of Meyer flows, particularly on the important
direct problem in which the nozzle wall contour is specified, and this work is discussed in the
review by Hall and Sutton (1964). It appears that other than for the boundary layer, dissipative
effects will not be important in such flows.

The transition from symmetrical flow with subsonic velocity on each side of the throat to
asymmetric Meyer flow was first studied by Taylor (1930) also using a power series, and such
symmetrical flows are therefore often called Taylor flow. In this case the inviscid theory leads
to difficulties. Taylor's calculations showed the development of supersonic pockets near the noz-
zle surface as the peak velocity on the nozzle axis increased, however, above a certain subsonic
value of this peak velocity Taylor found that such symmetrical solutions would no longer Exist.

Grtler (1939) showed that the series used by Taylor diverges as the peak velocity on the axis
approaches the sonic value, and suggested that this difficulty is caused by neglect of higher order
terms in the power series expansion. Grtler attempted to extend Taylor's series solution, how-
ever, a number of artificial assumptions regarding the series coeffiLients makes the convergence
of Grtler's solution suspect.
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Emmons (1946) applied the method of relaxation to the transition problem and also obtained
supersonic pockets near the wall. When the peak centerline Mach number exceeded a value of
0. 812 shock waves terminating the supersonic pockets had to be introduced in order to permit the
elimination of residuals in the relaxation calculations. Even then there are difficulties for the
shock waves appear suddenly and, as mentioned in the Introduction above, a sharp expansion must
be introduced immediately behind the shock to avoid a discontinuous streamline curvature. In
addition to the experimental results quoted in the In 'oduction, it is interesting that a rapid pres-
sure rise behind transonic shock waves has also been bserved by Ackerct, Feldman and Rott
(1946).

Instead of considering approximate solutions of the full equations o. compresible inviscid flow
as above, another approach is to study exact solutions of the approximate inviscid transonic equa-
tion (Eq. (14)). Tomotika and Tamada (1950), and Tomotika and Hasimoto (1950) obtained an exact
similarity solution of this equation describing both Taylor and Meyer flow, however their solutions
did not provide for a smooth transition between the two types of flow. The similarity solutions
describing Taylor flow also contain supersonic pockets but in the solution for which the pockets
just meet on the axis the .lope of the axial velocity distribution becomes discontinuous at the sonic
point. This singularity on the axis, which appears to be a source of much of the difficulty dis-
cussed above appears related to the fact that here tangents to the sonic line and the characteristics
coincide (Ryzhov 1963).

A large family of two dimensional exact solutions have also been developed starting from the
hodograph equations (Falkovich and Chernov 1966, Germain 1964), however, the planar self simi-
lar solution of Ryzhov (1963) is of greatest interest here since he considered both the transition
from Taylor to Meyer flow and the formation of shock waves. With the sonic point at the origin
Ryzhov considers axial velocity distributions of the form

U(X, 0) = AIX , X < 0 U(X, 0) = A2 X , X > 0 (32)

for then the inviscid transonic equation admits self similar solutions of the form

U = y2f() V = y3g() X/y2

By an ingenious transformation of variables Ryzhov is able to study tile singularities of f(4) in
detail and thereby determine the properties of the self similar solution. Ryzhov used the criterion
that shock waves must appear wherever limit lines along which the acceleration is infinite occur
and nozzle flows with shock waves are investigated. These flows all have the feature that the shock
is tangent to the sonic line at the center of the nozzle. A weakness of the Ryzhov analysis Is the
use of the inviscid equations when limit lines with infinite velocity gradients appear.

At this point it appears appropriate to quote from the footnote on page 68 of Guderley's (1962)
book:

"If the nozzle is symmetrical with respect to the throat, then as long
as the flow is subsonic along the entire length, there exists a symmetry
also in the flow field. This Is certainly no longer true when the nozzle is
acting as a DeLaval nozzle. One would expect that a study of the transition
from one behavior to the other would provide an insight Into the phenomena
of transonic flow. A direct analysis of nozzles has, however, not in fact
led to this hoped for result."

It would appear to be more consistent to begin the investigation of such transitional flows with the
V-T equation, and then to determine when viscous solutions approach the inviscid solution as
Re6 - c. This problem has been considered by Szaniawski (1964a, b) and in great detail by
Kopystynjski and Szanlawskl (1965).

Kopystynski and Szaniawski considered flow through a nozzle throat with the contour

(+y+ = 2 2 (x) (33)

where L is the nozzle half height, and f(x) is an increasing function of x with A(O) = 0, (0) / 0.
Assuming the series development

A+ 2)
u = I+ CU(x) + v = vC V(x) y+. (34)
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the boundary condition (Eq. (33)) then leads to the result that V(x) = c2 (- + 1) f(x) f'(x) while the
V-T equation reduces to the ordinary differential equation

AA A 4

6U" =UU' - f't (35)

Here 6 is shorthand for [ Re6 (y + 1] 1. The flow considered is thus quasi-one dimensional
since the variation of u with y is not taken into account. By taking v - 0( 2 ) instead of O(E3 / 2)
the authors have limited the validity of their analysis to streamlines which are very close to the
nozzle axis.

When 6 = 0 Eq. (35) has the two solutions

U = + f(x) (36)

and the problem is to jetermine under what conditions solutions of Eq. (35) approach the inviscid
solution (Eq. (36)) as 6 - 0. Applying the theory of Vasileva (1963a, b) Kopystynski and Szaniawski
showed that the viscous solutions will converge to Eq. (36) as 6 - 0 everywhere except in the
neighborhood of the sonic point x = 0.

The stretched variables

x= l/2 , UA= 26 f'(0) [(g) + R(6, )] -m R.(4), )=0 (37)

are introduced to examine the structure of the flow near the sonic point in greater detail. Then
expanding f(x) in a Taylor series about x = 0 and keeping only the first term Eq. (35), after one
integration reduces to the Riccati equation

(d '/dt) -,2 = +A (38)

where A is an integration constant. The transformation, 4' = 2t - (v'/v), changes Eq. (38) to the

second order linear equation

v" - 2tv' + (A - 1)v = 0 (39)

The solution of Eq. (39), and hence also of Eq. (38) can be expressed in terms of confluent hyper-
geometric functions. Depending on the values of A and of the initial value, Po = '(0), solutions
may be continuous or discontinuous, and the region of continuous solutions is determined in the
*o - A plane. Typical solutions are shown in Fig. 2 and display a behavior suggesting the initial
stages of shock formation near a nozzle throat. The problem of matching these inner solutions to
the outer inviscid solutions is also considered.

The solutions shown in Fig. 2 are nonunique for all of them asymptotically approach + t as
I I - cc. This is a disturbing result for the solutions should be responsive to the downstream

boundary conditions just as in the one dimensional nozzle theory (Shapiro 1953). The difficulty
may be related to the quasi-one dimensf al nature of the theory which does not take into account
the variation of u with y.

A different approach was used by Sichel (1966) who found that a Tomotika and Tamada (1950)
type nozzle similarity solution is also possible in the viscous -transonic case. Using the irrotation-
ality conditions to eliminate V the normalized V-T cquation expressed in terms of ut1) instead of
U becomes

UXXX(1) - (u) )XX + u = () 0 (40)

Substitution of the transformation

um = Z(S) + 2a 2Y 2  S= X + cy 2  (41)

which is the same as that used by Tomotika and Tamada (1950), collapses Eq. (40) to the ordinary
differential equation

Z1" - 2ZZ" - 2(Z' -2a) (Z' + a) = 0 (42)
The function Z is also u( 1)(x, 0), the velocity on the axis Y = 0. The arbitrary constant a can be

related to the nozzle geometry. Equation (42) is the same as that obtained by T -iotika and
Tamada except for viscous term Z"'. The special Inviscid solutions Z = 2aS, and Z = - oS are
also solutions of Eq. (42), and the nozzle velocity distribution obtained from Z -2cS is identical
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to that obtained from the first three terms of Meyer's (1908) original series solution. From a
study of trajectories in the Z, Z', Z" space it has been possible to find numerical solutions of
Eq. (42) starti-g from Z = 2aS, passing through a maximum value and then asymptotically approach-
Ing the nviscl'4 Jecelerating solution Z = - oS, and such solutions are shown in Fig. 3. As the
maximum iv'r-r.,es beyond the sonic value the deceleration to subsonic velocity (Z' < 0) becomes
steeper, resembling the transition through a shock wave. These numerical solutions, which are
similar to th', found by Kopystynski and Szaniawski (1965), also apparently describe the first
stages in the trinsition from Taylor to Meyer flow.

The solutic above is indirect in that the shape of the nozzle wall cannot be specified in advance,
rather, it is nee ssary to accept one of the streamlines produced by the similarity solution as the
nozzle contour. Each of the solutions shown in Fig. 3 produces a somewhat different nozzle con-
tour and as the ce'.terline velocity maximum increases undulations occur in the nozzle wall stream-
line. A typical nozzle flow field showing streamlines and constant velocity lines is shown in Fig. 4
for a ratio of throat half height h to throat radius of curvature Rt of 1/4. The beginnings of a shock
wave appears just downstream of the nozzle throat. The solutions shown in Fig. 3 are all asymp-
totic to Z = - S as S -Qo; however, no conclusions regarding uniqueness can be reached since each
curve in Fig. 3 represents a different nozzle contour. Axisymmetric similarity solutions have
also been determined (Sichel and Yin 1967a) and their asymptotic behavior as they approach the up-
stream and downstream inviscid solutions has been investigated.

A completely different situation arises in low Reynolds number flow through very slender noz-
zles. In that case the flow is dominated by the boundary layer, that is the shear stresses rather
than the compressive viscous stresses play the key role. This problem has been considered by
Williams (1963). In that case the sonic line is concave downstream in a flow accelerating to super-
sonic velocities rather than being concave upstream as in the Meyer solution. A study of the
boundary layer free stream interaction problem will probably require a combination of the V -T
solutions described above and the type of analysis considered by Williams.

SOURCE AND SOURCE -VORTEX FLOW

Exact solutions of the equations of two dimensional inviscid compressible flow for source and
source-vortex or spiral flow contain limiting circles at or near the sonic velocity where the accel-
eration becomes infinite (Taylor 1930, von Mises 1958, Oswatitsch 1956). Solutions no longer exist
inside these limiting circles, and the inviscid theury clearly fails when velocity gradients become
very large. Viscous source flow using the full Navier-Stokes equations was therefore investigated
by Wu (1955), Sakurai (1958) and Levey (1954, 1959). Wu and Sakurai were able to find closed
form source solutions valid in the region of transonic flow and it has been possible to show that
these solutions are also a similarity solution of the V-T equation (Sichel and Yin, 1967b). With
the transformation

u(1) = f(S) , S = X + >Y (43)

which was first introduced by Tomotlka and Tamada (1950), the V-T equation, in the form of Eq.
(40) can be reduced to the Riccati equation (Sichel and Yin 1967)

f, _f2 + A2 f C I S + C2 (44)

The solution (Eq. (43)) may be interpreted as a source-vortex flow with S corresponding to the
radial distance from the sonic circle while the arbitrary parameter A determines the circulation
and is zero for source flow. The magnitude of the integration constant C1 depends on the source
strength.

Without the viscous f' term the solution of Eq. (44) becomes

S+ (A 4/4C1) = (1/C1)[f - (A 2/2)]2 (45)

with a limit circle at S - (04/4C 1 ) where df/dS - o. In the transonic regime the solution (Eq.
(45)) is identical to that of Taylor 1930), and has an accelerating or supersonic branch and a
decelerating or subsonic branch. The inviscid solution provides no mechanism for transition
from one branch to the other. The viscous solution of Eq. (44) can be found in closed form in
terms of Airy functions, and is identical to that found by Wu (1955) and Sakurai (1958). Inclusion
of the viscous term eliminates the singular behavior at the sonic point, where the acceleration
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now remains finite. Viscous solutions exist which first approach the supersonic branch of the
inviscid solution, pass through a shock like compression, and then approach the subsonic branch
of the inviscid solution. All the solutions asymptotically approach the subsonic branch of the in-
viscid solution as S -co. While the inclusion of the viscous term has eliminated the singular be-
havior near the sonic point, the solution still diverges at some point inside the sonic circle, where
the V-T equation apparently fails. The V-T radial solution discussed above remains valid only if
the sonic radius P' is of order T/2 where, as before, r is of the order of the shock thickness.
It is interesting that ?* is thus of the same order as the shock radius of curvature Rs for which the
V-T oblique shock solution remains valid.

Compressible radial flow in the presence of a gravitational field behaves like the flow in a
converging diverging nozzle in that the flow can accelerate from subsonic to supersonic values,
and such flows have been used as a model for the solar and stellar wind (Axford and Newman 1967).
As in the case of nozzle flows the inviscid theory fails to provide a smooth transition from flows
subsonic throughout to accelerating subsonic-supersonic flows. Consequently Axford and Newman
(1967) studied viscous transonic solutions for such radial flows with a gravitational field. Axford
and Newman used a series expansion similar to that used above to develop a viscous -transonic
equation which now includes a body force term. Since the problem Is one dimensional, integration
and suitable transformation of variables reduces the V-T equation to a Riccati equation for which
solutions can be found in terms of parabolic cylinder functions. While some of these solutions
diverge, there is also a family of solutions which provide a smooth shock like transition from the
accelerating to the decelerating branch of the inviscid solution just as in the nozzle problem.

CONCLUSIONS

Use of the viscous-transonic instead of the inviscid equation seems to resolve some of the
difficulties of the inviscid theory discussed in the Introduction. The viscous transonic solutions
provide for a smooth transition from the Taylor to the Meyer type of nozzle flow; however, the
problem of obtaining a truly two dimensional V-T solution for flow near the throat of a nozzle of
specified shape remains to be solved. The key problem of determining the jump conditions across
a weak shock adjacent to a curved wall has not been solved; however, some progress has been
made in evaluating the effect of viscosity on the asymptotic behavior of the flow about bodies. The
precise role of viscosity in axisymmetric flows remains to be clarified. The V-T equation appears
to resolve the limit line behavior near the sonic velocity in source vortex flows, and actually the
V-T solution is a part of the more general solution of the viscous source-sink problem by Wu (1955),
and Sakurai (1958). It appears necessary to include viscous , fects whenever limit lines occur in
the inviscid transonic flow theory. At the very least, in these cases, the question of whether in
the limit Re6 -o the flow can be represented by inviscid regions separated by Rankine-Hugoniot
discontinuities needs to be investigated.

The theory of viscous transonic flow is an extension of the Taylor (1910) theory for the struc-
ture of weak shock waves. The Riccati equation appears to play a central role in the study of V-T
flows. Thus for fixed X the V-T equation can be formally reduced to a Riccatl equation, ani many
of the V-T problems discussed in this survey, in the end, involved the solution of a Riccati equa-
tion. The fact that the Riccati equation can be transformed to a second order linear equation,
made it possible in many cases to obtain solutions in closed form. Almost invariably there were
then divergent solutions and solutions which contained shock like transitions from supersonic to
subsonic flow. Even such a simple equation as

z' - z2  b2

has the solutions z = - b coth bx, - b tanh bx. Of these the solution - b coth bx diverges at x = 0
while - b tanh bx is the same as the Taylor weak shock solution. It is to be expected that this
Riccati tyoe behavior will also arise in more complicated V-T flows. In any case a key advantage
of the V-T approximation is that the interaction between convection and dissipation is reduced to a
mathematically simple form.

It is felt that the V-T equation may be able to shed some light on the well known "transonic
controversy" regarding the existence of smooth pockets of supersonic flow imbedded in an outer
subsonic flow. This controversy has been reopened by the inviscid calculation of transonic pro-
files by Nieuwland (1967) and by the bhock ft ee supersonic pockets produced experimentally by
Pearcy (1962). It would be interesting to see how viscosity influences the mathematical question
of existence or nonexistence of smooth pockets of supersonic flow. In the case of the nozzle prob-
lem the V-T theory quite naturally describes the gradual formation of shock waves terminating t0
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supersonic pockets at the wall.

The question of the stability of various viscous-transonic flows appears not to have been
investigated. There are also a number of magnetohydrodynamic and relaxing transonic flows
where viscosity may play an important role.

No comparison between theory and experiment are presented in this review, and this fact
reflects a serious gap in the theory of V-T flow. There Is-a decided need for a checkpoint be-
tween theory and experiment if the theory of V-T flow is to do more than provide qualitative
explanations.
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SUMMA~ff

Attention is drawn to Important restrictions to the range of applicability of the
flow model developed in earlier work on shock-induced separation of turbulent boundary
layers on aerofoils and wings, and also corresponding restrictions to the conclusion
then drawn that full-scale behaviour could readily be reproduced at low Reynolds numbers.
These restrictions arise because the model of a bubble growing progressively from the
foot of the shock towards the trailing edge does not include the interaction that some-
times occurs between the disturbance at the foot of the shock and a subsonic-type rear
separation if one exists, or is incipient, in the continuous adverse gradient further
downstream.

Such interactions are shown to be of increasing importance at wind-tunnel scale (as
the possibilities of using thicker and more higly loaded wing sections develop) and to
introduce real difficulties in reproducing full-scale behaviour at low or moderate
Roynolds numbers.

j



NOTMTON

ML - Mach number

p - static pressure

H - stagnation pressure

Cp - pressure coefficient (p - Po)4YIMOMQ

CL - lift coefficient

R - Reynolds number (based on wing chord)
b - wing span

c -wing chord

x - chordwise co-ordinate
CL - angle of incidence

y - ratio of specific heats

Suffices

0 - value in~ the undisturbed stream

L - value locally on the wing surface.
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i. Introduction

In considering shock-induced boundary-layer separation on aerofoils and wings, and the
effects that it has on loads and moments, certain broad features have to be taken into account in
addition to the local interaction between the foot of the shock and the boundary layer (Fig. 1).
Three such features in particular are often more important than the details of the local
interaction:

(a) the presence of mixed supersonic/subsenic flow, and the compression from one to the
other, in the flow external but immediately adjacent to the separated flow;

(b) the presence of a continuous adverse pressure gradient in the subsonic flow over the
rear of the aerofol downstream of the shock-and following-the near-discontinuous
gradient through the shock itself; and

(c) the special importance of the trailing edge, and of the variation of trailing-edge
pressure in determining the overall circulation and lift on the aerofoil - the
significant effects on the overall flow do not develop until the separation has
disturbed the pressure at the trailing edge.

The pattern of development of the separation and of its effects - and the influence of such
variables and paramuters as free-stream Mach number, incidence, shock strength, Reynolds number,
transition position - can best be understood by postulating a flow model that incorporates these
broad features.

The flow model that has often been used satisfactorily for this purpose in the past1 '2'3 '4 is
one in which the influence of features (a) and (c) tend to be dominant. The bubble that forms at
the foot of the shock remains localised so long as the steep pressure rise through such a
localised interaction is able to decelerate the upstream supersonic flow to a subsonic one. As
soon as the upstream Mach number has increased to a value for which this is no longer possible,
the bubble spreads rapidly towards the trailing edge, and in doing so triggers a rapid fall in
trailing-edge pressure through its effect on the boundary layer-there. It is this fall in
trailing-edge pressure that leads to the first significant effects on the overall circulation and
loads on the aerofoil and wing.

The success of this model stemmed from the fact that the effects on the boundary layer at the
trailing-edge position were dominated by the rapid bubble growth that is triggered by the spread
of supersonic velocities along the edge of the bubble. The influence of the adverse gradient in
the downstream subsonic flow (feature (b)) was not sufficient to modulate this pattern.

In particular, scale effects that could stem from differences 4n boundary-layer thickness
over the rear of the aerofoil were noticeably absent. It was shown that, provided the boundary
layer was turbulent at the initial separation point, fp1-scale behaviour could ba well reproduced
at quite moderate values of Reynolds number (- .5 x 100). This was because the form of the
recompression from supersonic to subsonic flow was well represented, and hence the rapid growth of
the bubble.

The major scale effects were then confined to cases for which the boundary layer remained
laminar up to the separation point. For these, the precise position of transition in the
separated shear layer could influence the nature and magnitude of the steep pressure rise and so
determine whether or not subsonic flow was re-established for a given shock strength. Even these
scale effects could be eliminated by fixing transition artificially at wind-tunnel scale because
the boundai- layer was likely to be turbulent at the foot of the shock for all relevant full-scale
applications.

This remained valid for as long as the wings that were used for excursions into the transonic
flow r6gime remained relatively thin and lightly loaded; for such wings the adverse gradients in
the subsonic flow downstream of the shock were not strong enough to influence the overall pattern.

However, progress in the design of swept-wing aircraft in recent years has called for the use
of progressively thicker and more highly loaded sections. Inevitably, this has led to steeper
adverse pressure gradients in the rear subsonic flow, gradients that now modulate the gross effect
represented in the flow model originally postulated. Clearly, therefore, a new, more comprehen-
sive model is needed which will incorporate this modulation. In particular, and especially at
wind-tunnel scale, a second separation tends to occur in the downstream subsonic flow and to
spread forward from the trailing edge.

This second separation (Fig. ib) is the roar, subsonic type which is known to depend
critically on the thickness and the velocity profile of the boundary layer approaching the
trailing edge as well as on the local pressure gradients. Even in the absence of a shock wave,
the occurrence and development of such separations are known, for example, to be sensitive to the
effects of Reynolds number and to the manner in which transition is fixed at tunnel Reynolds
number in attempting to simulate full-scale conditions. It is not surprising, therefore, to find
these sensitivities carried over into the flows in which the rear separation and the local effects
of the shock interact with one another, nor indeed, to find them amplified by the irteraction.

With the progress in swept-wing design, the tendency has developed for rear separations to
occur in wind-tunnel experiments and to bring with them the scale effects inherent in the
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alternative flow model now to be described, and inherent in the change from one flow model to the
other as full-scale conditions are approached. The correct full-scale behaviour, for cruise and
modierato lift coefficients at least, is probably stL. represented by the original flow model, but
this has become much more difficult to reproduce at wind-tunnel scale.

The paper will draw on detailed flow observations - for the idealised situation provided by
two-dimensional aerofoils - to describe the differences between the two flow models and to contrast
the sensitivity to scale for the alternative one with the insensitivity for the original. Some
examples will be shown to support the details postulated for the alternative model, and to illus-
trate the order of the scale effects that can be introduced by differences in chord Reynolds number
and in the type and location of the agency used to fix transition artificially.

The relevance of this to swept wings will be briefly illustrated by reference to similar
observations on a representative model.

Finally, some tentative remarks will be made to indicate the increased difficulties of
achieving correct simulation in wind-tunnel tests.

2. The original flow model, A

The development of the flow according to this model is indicated diagrammatically by the
sequence of sketches in the extreme left-hand column of Fig. 2. The sequence I to VI can be taken
as successive stages in a progressive increase of free-stream Mach number or of incidence - in
either case the parameter that first caused the separation and then increased its severity would
be the increasing shock strength. This is illustrated, for example, by the family of upper surface
pressure distributions shown in Fig. 3 for an increase in free-stream Mach number with incidence
held fixed. The shock wave is, of course, the steep pressure rise in the middle part of the chord.
It first appears at about Mo = 0.7, corresponding to stage I, say, of the sketches in Fig. 2.
From there on, the increasing shock strength is at first revealed in the increasing magnitude of
the pressure rise associated with an increasing local Yach number immediately upstream of the
shock; later, after separation has occurred, the steep pressure rise at the surface is limited by
the separation itself, but the strength of the shock away from the surface is, nevertheless,
progressively increasing.

he influence of the local bubble at the foot of the shock is first evident for Mo = 0.76 (the
first curve after that labelled 0.74), corresponding to stage III in the sketches. The progressive
spread of the bubble towards the trailing edge is revealed by the distributions for subsequent
free-stream Mach numbers. The rate at which the pressure at the traijing edge varies with Mach
number is first influenced(first divergence of trailing-edge pressure ) for the free-stream Mach
number just below Mo = 0.8, corresponding to stage V of the sketches, and the bubble itself spreads
to the trailing edge immediately after Mo = 0.8, corresponding to stage VI.

The progressive growth of the bubble is thus a prominent feature, with the separation point
fixed to the toe of the shock and the reattachment point moving downstream towards the trailing
edge as the overall strength of the shock increases. For a range of shock strengths beyond that
for which separation first occurs, the boundary layer remains attached to the surface between the
bubble and the trailing edge; for the first part of this range, the boundary layer at the trailing
edge is not sufficiently disturbed to influence the trailing-edge pressure or, through it, the
overall circulation and loads.

It is a further feature of this flow model that the influence on trailing-edge pressure and
circulation develops rapidly from a particular, fairly clearly defined stage. If one considers the
flow with a well developed bubble (Fig. Ia), one finds5 that a "tongue" of local supersonic flow
extends along the edge of the bubble downstream of the toe of the shock. This tongue is existing
in a region in which pressure is rising in the downstream direction and so the stream tubes are
contracting. The contraction offsets the tendency for the shear layer to reattach and delays the
closure of the bubble. In contrast, a local subsonic flow with expanding stream tubes would help
to promote reattachment, and for as long as the pressure rise near the forward part of the bubble
re-established subsonic flow, the bubble size would tend to be self-limiting. The self-limiting
influence is removed immediately the supersonic tongue appears, and this in turn leads to a snow-
balling effect and a rapid bubble expansion.

We thus have the situation in which the rapid divergence of trailing-edge pressure -
"significant effects of separation" - occurs in response to a rapid bubble growth triggered from
the toe of the shock. This is a situation which is not particularly sensitive to the thickness or
profile of the boundary layer (provided it is turbulent at sept ;) and one in which the growth
of bubble from the shock rearwards is too rx~pid to be strongly ced by smaller changes
spreading forward from "he trailing edge.

This is why it was possible to reproduce in wind-tunnel tests at relatively low Reynolds
number the same flow developments as were obtained in flight6 . For example, the comparison in
Fig. 5 shows clearly a very similar bubble development between tunnel and full scale from shock
strengths that correspond quite closely (although the section shapes differed slightly - giving
slightly further aft shock positions in flight).
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Of course, some scale effects can occur even with this type of flow, due to changes in the
detailed interaction at the foot of the shock reflecting in changes in the magnitude of the steep
pressure rise and hence in the range o local upstream Mach numbers for which subsonic flow is re-
established in the steep pressure rise5. The repercussions of such changes are usually small so
long as the overall flow conforms to this model; the real impact of such changes can occur in the
alternative flow model because, as we shall see, there is likely then to be an amplifying process
involved.

Some further analysis at this stage, of the manner in which surface pressures are affected by
separation developing according to the original model, A - and of how the surface pressures can be
used to detect the essential features of the flow - will help later in drawing the contrast between
the two flow models.

The product Cp(i - Mo )T for a fixed chordwiso station (Figs. 7 and 8) varies little with
free-stream Mach number until the pressure at the station in question is subjected to the local
influence of the shock wave (as at point X of the upper left diagram of Fig. 7) or of the
separation bubble (as at point X of the upper right diagram of Fig. 7). The curves for fixed
stations at the rear of the chord will take the form shown in the lower diagram of Fig. 8, with the
first influence of separation indicated by the divergent fall in pressure.

The development represented in Fig. 3, then, produces the series of curves shown in Fig. 8 for
fixed stations Xi to X6 (indicated on Fig. 3). These again demonstrate clearly that the influence
of the shock-induced separation spreads rearwards from Xl to X6 as the flow develops, reaching the
trailing edge, X6, last. This is indicated both by the locus of crosses, marking the first
influence of the separation, and by the points A, B, C, D, marking a certain approximate level of
static pressure in the disturbed flow.

3. The alternative flow model. B

The essential difference between this model and model A is the inclusion of a second
separation in the subsonic flow approaching the trailing edge (Fig. 2).

This second separation is the classical subsonic, rear, turbulent separation occurring in the
adverse gradient over the rear of the aerofoil. The occurrence and development of this type of
separation is known to depend on the magnitude of the pressure gradient approaching the trailing
edge and on the boundary-layer thickness and profile, i.e. on the local pressure gradient and on
the upstream history of the boundary layer. It is the upstream history that is of the greater
importance in considering the occurrence and/or the progressively increasing severity of the rear
separation in the flow developments that are now in question and that occur as either free-stream
Mach number or incidence is increased (down the page in the schematic representation of Fig. 2).
The downstream pressure gradients themselves are changing only slowly through any particular one of
the sequences shown, but the disturbances to the boundary-layer thickness and profile at the foot
of the shock are increasing progressively as the shock strength increases.

This local shock interaction catalyses the development of a rear separation that was already
either incipient or actually present in the subsonic rear gradients before shock waves appeared.
%hen the rear separati-n occurs, there is a strong, more extensive interaction between the distur-
bances at the foot of the shock and the rear separation, and this larger interaction accelerates
and intensifies the influence of the shock-induced phenomena an the over.ll flow including the
circulation. The larger interaction is now sufficiently strong to prcduce a modulation to the
pattern of development previously described for the model-A type of flow. This applies particularly
to the well-defined interval between the f rst appearance of a local bubble at the foot of the
shock and the first significant effects on the circulation that stem from changes in the pressure
at the trailing edge, and to the connection between this interval and the spread of local super-
sonic flow downstream from the imediate vicinity of the steep pressure rise at the toe of the
shock.

The rear separation is the common feature that distiiguishes this flow model from model A, but
it can appear and influence the flow development in a variety of ways that differ from one another
in detail. It is useful to take note of these differences at this stege, a'though in certain
overall respects they are differences only of degree, especially, for e.-ample, in contrasting the
sensitivity of this flow model to scale effects with that of model A.

The differences between the various sequences sketched in Fig. 2, as distinct from develop-
ments in each sequence, are strongly dependent on the severity of the local pressure gradients in
the downstream subsonic flow, as well as on the thickness and profile of the boundary layer.X

This applies also to the differences between the model A sequence and the others.
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Thus, the combination of downstream gradient and of boundary-layer thickness and profile
might be such that the rear separation does not appear until there is a bubble at the foot of the
shock (variant Bi), that is, until the local interaction with the shock causes a substantial dis-
turbance to the boundary layer approaching the trailing edge.K

With a somewhat steeper downstream gradient or with a turbulent boundary layer that is thicker
as it approaches the shock (e.g. at lower unit Reynolds number or for a more forward transition
position), the interaction with the foot of the shock would be sufficient to develop the incipient
rear separation before it produced an actual shock separation bubble (variant B2).

For more severe downstream gradients still (e.g. for a thicker or a more highly loaded aero-
foil) or for thicker boundary layers still, the rear separation could be present even before the
appearance of shook waves (variant B3).

An important feature of all three variants is that the interaction between the local distur-
banoe at the foot of the shock and the rear separation accelerates the development of the whole
shock-induced phenomenon as compared with -model A. In turn, the forward spread of the rear
separation to link up with the bubble at the foot of the shock, or with the foot of the shock
itself, is an important agent in this acceleration; in this connection it is convenient, for
variants B2 and B3, to distinguish between the cases where the link up is with a local separation
that is already present at the foot of the shock, B2a and B3a, and those for which the rear separation
spreads to the foot of the shook before separation would otherwise have occurred there, B2b and B3b.

Some divergence of trailing-edge pressure, and hence influence on circulation and loads, starts
as soon as the rear separation is present; it builds up as the rear separation spreads forward
under the influence of the growing disturbance at the foot of the shock. The link up between the
two separations, or between the rear separation and foot of the shock, leads to a greatly acceler-
ated divergence. The rate of development of the rapid divergence of trailing-edge pressure thus
differs from one variant to another and in particular between variants B2a and B2b on the one hand
and between B3a and B3b on the other.

We are now in a position to compare the surface-pressure distributions observed for a flow of
this type with those described for model-A flow in the preceding section; this will also provide a
better background for subsequent discussions of the part now played by the spread of local super-
sonic flow downstream.fgom the toe of the shock, of the work of others with flow zrmdels falling in
this general oategory oand of the nature of the important scale effects to which this flow model
Is prone.

The family of upper surface distributions reproduced in Fig. 4 illustrates the developing
effects of separation for a model-B type flow as free-stream Mach number is increased fc: a fixed
angle of incidence. In the same way as for the corresponding family for model-A flow (Fig. 3), the
increasing shock strength is the parameter that produces the occurrence ard progressive development
of shook-induced separation. Although the aerofoil (NPL 9240) is different from that used for the
earlier illustration (NPL 9230), the angle of incidence is chosen so that the increasing shock
strength covers approximately the same range of values and takes place in approximately the same
range of free-stream Mach numbers. In particular, the shock first appears at about Mo = 0.7 and
the separation develops strongly between Mo = 0.7. and 0.85 as before.

The Reynolds numbers were the same for the two cases, and transition was fixed in the same
manner in the same chordwise position, so that the thickness of the turbulent boundary layer
approaching the shock should have been closely similar (there may have been small differences due
to the small differences in the pressure gradients upstream of the shock and in the shock positions).
The most relevant difference between the two aerofoils in the present context is in the severity of
the pressure gradient in the subsonic flow over the rear of the aerofcil. This feature is better
demonstrated by the low-speed (Mo = 0.6) pressure distributions reproduced in Fig.A4.

The result of the significantly more severe gradient for the NPL 9240 aerofoil is a major
difference in the development of the separated flow, and this is shown clearly by the pressure
distribution over the rear of the aerofoil for 11ach numbers between 0.74 and 0.85 (Fig. 4). In
contrast to the progressively rearward bulging of the curves for the model-A flow (Fig. 3)
reflecting the progressive rearward growth of the bubble, the curves for the model-B flow (Fig. 4)
.llustrate a fan-like development centred on the foot of the shock. This reflects the fact that, at
a certain stage, the rear separation links imnediately to the foot of the shock to give a flow that
is completely separated from shock to trailing edge. The pressures at all points over the rear of
the aerofoil, including the trailing edge, are influenced right from the start of this process, and
the pressure at the trailing edge most strongly of all. It can readily be inferred that this will
have a strong bearing on the nature of the trailing-edge pressure divergence and, through it, on the
effects on the overall circulation and forces.

K In postulating the model-A flow, it was, of course, assumed that the combination of downstream

gradient and boundary-layer thickness were such (i.e. less severe than for B1) that a rear
separation would not ?pear before the rapid rearwards growth of the shock bubble, triggered by
events near the too of the shock, had dominated the overall development.

It will be evident later that this is an example of the B3a variant.
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This is further illustrated in Figs. 9 and 10 by the analysis of the variation of pressure at
fixed chordwise positions. The sketches in the upper part of Fig. 9 indicate the manner in which
the chardwise pressure distribution is disturbed by the occurrence of rear separation: at the rear,
under the separated flow itself, the pressures are lower than they otherwise would be, but further
forwards, just upstream of the separated flow, they are higher. As the separation point moves f6r-
ward, e.g. with increase of free-stream Mach number from (a) to (b), so the disturbance at points
like Xn_ changes from an increase in pressure to a decrease. Thus, when the pressures at fixed
points, -'Xn Xn-1 , say, are plotted against Mo in the form shown- in the lower diagram, the
first influence of rear separation is seen a, a fall in pressure at the extreme rear-of the chord
and an increase further forwards. As the separation spreads and becomes more severe with
increasing MO , the pressures at the rear, e.g. at point Xn , fall progressively; those at
points further forward, e.g. at point Xn.1 , start to fall as the separation point moves forward
over the points in question.

The curves in Fig. 10 have been cross-plotted from the family of chordwise distributions of
Fig. 4. The upwards divergence (fall in pressure) in the curve for the trailing edge, X6
indicates that some rear separation was present from about Me = 0.5 onwards, i.e. before the
appearance of shock waves. We thus have a model-B3 flow.

As M was increased to 0.74, the mild upwards-divergence spreads forwards in turn to positions
X5 and X4 , indicating a gradual forward spread of the separated flow.

Increase in Mo beyond 0.74 produced an abrupt change in which the separation point spread
forwards suddenly; the pressure started to fall at several positions simultaneously, and the rate
of fall at the trailing edge increased substantially.

The abrupt change in the pressure variations was obviously associated with a correspondingly
abrupt change in the developmei.t of the rear separation that was in turn caused by a change in the
disturbance at the foot of the shock. The-fact that shock waves were already present for M: 0,72
and 0.74 (Fig. 4), and not than noticeably disturbing the previously established pattern of sloi-
development in the rear separation, suggests that it was the occurrence of a local bubble at the
foot of the shock that triggered the subsequent abrupt change, and, further, that in this change the
rear separation point jumped forwards to lizk with the shock bubble as postulated for the model-B3a
flow.

These curves illustrate clearly how the interaction between the two separations serves to
transmit the effect of the shock-induced separation immediately, and in a magnified form, to the
trailing edge - in contrast to the situation for model-A flow. In the process of transmitting the
effect of the disturbance at the foot of the shock to the overall circulation about the aerofoil,
the rear separation thus acts both as a relay and as an amplifier.

The amplification would be expected to apply to the effect of smal differences in the shock
interaction region, and this was well illustrated by the work of Little . He studied in detail the
steep pressure rise at the toe of the shock and the ability of this to re-establish subsonic flow
downstream. He showed that a three-fold increase in the thickness of the turbulent boundary layer
approaching the shock toe (equivalent to a proportional decrease in unit Reynolds number of over
200) led to a reduction of the upstream Mach number for which subsonic flow could be re-established
from 1 .26 to 1.21. By itself, (i.e. with model-A flow), such a change would be expected to produce
only a slowly developing effect of decreasing Reynolds number. But in his experiment in which a
rear separation was also present (model-B3a flow), the effect was considerably magnified because
the rear separation spread immediately forward t. the shock bubble as soon as the supersonic tongue
began to appear downstream of the shock toe. Here then is one particular mode by which the relaying
and amplifying processes can lead to substantial scale effects.

Thomas8 has also exam~ined theoretically the nature of scale effects that can exist with model-B
flows. fie postulated the B2b variant in which the shock modifies the profile of the turbulent
boundary layer at its foot without causing it to separate locally, but in which even this modifica-
tion leads to the occurrence anI development of a rear separation. the rear separation point moves
rapidly forward to the foot of the shock as the shock strength increases. He derived the distur-
bance to the boundary-layer profile at the fo~t of the shock by assuming that the pressure rise was
the Sinnott "equivalent shock pressure rise" and that this rise was spread sufficiently (over
about five boundary-layer thicknesses) to be treated by conventional boandary-layer theozy.

Gadd 0 has also studied experimentally the process by which shock separation links with that
at the trailing edge.

4. Experimentally observed scale effects with model-B flows

Some of the clearest evidence of the~rally serious discretancies that can occur between wind
tunnel and flight was presented by Loving" and thu pressure distributions shown in Fig. 6 are
reproduced fror his paper. Although the results of these moauurements are not available in
sufficient dot. i" t3 analyse in the manner described above, it is a reasonablo inference fre'- the
contrast with th vArclr results presented in Fig. 5 that the flow was of modol-B type for these
later wlud-tunro' experiments. For example, the strong differences that Loving observed bt-woon
t Arnel ,.nd flihtV ,ndobtG11j ston from the poor pressure recver, downstream of the shook in the
wlnd-tunntd tont:; the more forward shock positlon, and the oifforences in circulation that would
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result from the different trailing-edge pressure, are direct consequences of this poor pressure
recoveryi . Furthermore,, there is no evidence of the inflection point between shock and trailing
edge that is characteristic of the-closed bubble, as in Fig. 3, for example.

This inference willbe supported by the ensuing discussion of a wider selection of wind-tunnel
results, (a) for aerofoils in a given range of unit Reynolds number but with differences in
boundary-layer thickness at the shock and- downstream introduced by differences in fixing transition
upstream; (b) for aerofoils at different Reynolds numbers; and (c) for a swept wing at different
Reynolds numbers. These examples have been chosen in such a way that they illustrate a variety of
the problems introduced-by model-B flows.

(a) Aerofoils with differences in fixing transition

The two widely different curves of variation of lift coefficient with increasing Mach number
shown in Fig. il were obtained on the same aerofoil with different transition bands. The chord 6
Reynolds number increased with &ch number (atmospheric stagnation presaire) from i,3 eto 2.0 x 10
The lower, chain-dotted curve was obtained with a relatively coarse transition band, near the
leading edge, that provoked transition at or very near the end of the band (i.e. in the region of 5%
chord). The upper, full curve corresponds to a finer band, further back, for which transition
occurred significantly further downstream, well beyond the end of the band even; although transition
was complete upstream of the shock (at about mid-chord), the thickness of the turbulent layer
approaching the -shock would have been significantly smaller.

The main feature of interest in the curves is the breaklfrom a rising coefficient to a falling
one, at about No = 0.7, that was caused by the shock-induced separation. The main difference
between the curves is that the-break is earlier and more severe for the thicker boundary layer.
This difference is a direct result of the rear separation - and, more specifically, of its
interaction with the disturbance at the shock - that developed in the model-B type flow for the
thicker boundary layer. The curves begin to diverge slowly from one another before the break
because a mild rear separation began to form even-before shocks were present, but the really large
differences developed later as the local separation at the shock increased the severity of the rear
separation and produced an interaction between the two separations.

The pressure distributions corresponding to points Aland B of Fig. 1i are reproduced in Fig. 12.
The pressurerecovery downstream of the shock is noticeably stronger for A than for B, and indeed,
there is an indication of the inflection point expected in the presence of a bubble tending to close.
This comparison is closely similar to that shown between flight and tunnel in Fig. 6. In addition,
it illustrates how the difference in trailing-edge pressure influences the pressures on the lower
surface; the lower pressures for curve B are associated with the reduced circulation that results
from the more severe separation. Reference back to Fig. 5, for which no such differences appeared,
serves to emphasise that such scale effects as this were absent so long as model A was appropriate
for both, wind tunnel ard full scale.

An illustration of the importance of the rear pressure gradient in the development of model-B
type flows is prov-ided by the comparisons in Fig. 13. The two lift curves of Fig. Ii (for the NPL
9240 aerofoil) are compared with a corresponding pair for a slightly modified aerofoil (NPL 9241).
The modification and the nature of its influence on the rear pressure gradient (in the absence of
shock waves) are illustrated in Fig.14.

For both aerofoils, the effects of shook-induced separation were amplified by the strong
model-B interactions that occurred when the thickness of the turbulent boundary layer at the foot
of the shock was increased (by the change in transition band). The difference in lift coefficient
produced by the amplification is in each case indicated by a vertical arrow from the curve for thin
boundary layer to that for the thick. The difference in the length of the two arrows shows that
the amplification was much smaller for the modified aerofoil (NPL 9241) than for the original one
(NPL 9240).

The influence of the strong model-B interactions (with the thicker boundary layer) was here
clearly affected by some small change in the flow, probably a small change from one aerofoil to the
other in the degree to which the rear separation had developed before the shook appeared. This is
an indication of how critically this type of scale effect, as between wind tunnel and flight, migbt
depend on the precise conditions reproduced in the wind-tunnel experiments.

Of at least equal importance is the demonstration that the comparison between the two aerofoils
was completely distorted by the strong model-B interactions. The small differences in aerofoil
profile h.d practically no effect on thi results wien the turbulent boundary layer approaching the
shock was reasonably thin (upper two curves), but a very significant effect when the boundary layer
was thick (lower two curves). The inference of this is that completely misleading results can be
obtained with modol-B type flows even when the object of the wind-tunnel tests is restricted to
producing a qualitative comparison between different designs.

The results in Fig. i5 show that similar differences occur for a shock-induced separation
developing with increasing incidence at fixed Mach number. The three different curves represent
different transition bands. The chord Reynolds number was the same for the three cases, but the

-, ckness of the boundary layer approacting any given chordwise position decreased as the band was
moved further aft towards that position. The three curves are different even for the low values of
incidence for which the flow was attached because the viscous effects on circ.Ilation were already
greater for the larger bo,.--y-layer thicknesses. These relatively small differences were, however,
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magnified by interactions that occurred-as the separated-flow developed near the incidence for
maximum CL and beyond.

The pressure distributions for the three points a, b, c, near the.position of maximum Cj, on
the respective curves, are shown in Fig. 16a. These reveal that the shock that produced the stall
was situated at about 30% chord.

For points b and c, corresponding to the intermediate and furthest forward transition positions
respectively, the steep pressure rise is that characteristically associated with a turbulent
separation at the toe of the shock (confirmed by flow photographs not herp. reproduced) and is just
re-establishing subsonic flow. In other words, a further increase in shock strength (i.e of
incidence) would be expected to produce a rapidly expanding bubble and hence rapidly developing
separation effects, as indeed is confirmed by the subsequent fall in CL. The most significant
difference between these two curves is probably the small difference in trailing-edge pressure
which is indicative of a slightly more severe rear separation for point c than for point b. (The
difference near the shock for point 'a' is also of considerable significance, but for different
reasons - see below.)

For an increase of incidence to that corresponding to points B and C (Fig. 15), the pressure
distributions, Fig. 16b, show how the more severe rear separation interacts with the expanded
bubble at the foot of the shock to magnify the difference between the two cases. The differences
in pressure at the trailing edge indicate that the rear separation for C is increased more in
severity than is the one for B, and that, as a result of th greater reduction in circulation
associated with this, the forward displace ent of the shock is greater; the supersonic flow at the
leading edge is in fact about to collapse 12 . The sequence here, then, was almost certainly that
(i) the difference in the thickness of the boundary layer approaching the shock led to a small
difference in the strength of the disturbance at the foot of the shock; (ii) this difference, in
turn, led to an amplified difference in the severity of the rear separation; (iii) although, even
in its amplified form, the difference in rear separation was relatively small, it produced a signi-
ficant difference in the overall flow development at a critical stage.

For this example there is an indication, in the pressures near the immediate trailing edge,
that some small degree of rear separation remained even for the curve B, corresponding to the inter-
mediate transition band. Ever, this, therefore, might be subject to some of the effects expected for
model-B type flow.

However, other and different difficulties were encountered on moving the transition band still
further agt in an attempt to eliminate these effects at the Reynolds number of these tests
(.6 x !0 ). Transition no longer occurred upstream of the separation point at the toe of the shock,
but immediately downstream in the separated layer. As a result, the steep pressure rise was greater
in magnitude (see Fig. 16a, point 'a' and Fig. 16b, point A) and sufficient to re-establish subsonic
flow. Reduced effects of separation would then be expected on this score alone, and it is
impossible to resolve how much of the difference that resulted from the second shift of the
transition band was due to this, and how much to the elimination of the model-B interactions.

It is indeed frequently and characteristically more difficult to eliminate the spurious
influence of model-B flow3 in wind-tunnel tests as incidence is increased and the shock moves for-
ward towards the leading edge. Viith the rearward shocks that occar at low incidences one is able to
offset some of the effect that rediced unit Reynolds number has - in increasing boundary-layer
thickness - by allowing the boundary lyer to remain laminar over more of the chord; transition can
be considerably further aft in the wind tunnel than at full scale but still be complete upstream of
the shock. This is no longer possible with the forward shock positions, and one is driven to the
need for higher Reynolds numbers in the wind-tunnel tests so tiat transition can be fixed upstream
of the shock without provoking a spurious rear separation.

(b) Aerofoils at different Reynolds numbers

Fig. 17 illustrates the offect of increasing Reynolds number, again for a case in which the
shock-induced separation develops with increasing incidence at fixed Mach number.

The curve for Reynolds nuwbor = 1.6 x 106 was obtained, from a similar set of measurements to
those of Fig. 15, in the NPL 20 in x 8 in tunnel (0.51 m x 0.20 m) with a transition band for which
transition w.CI not complete upstream of the shock. The curves for higher Re~nolds numbers were
obtained in a BAC 4 ft x 4 ft tunnel (I .22 m x 1.22 m); transition was provoked early on the chord
by disturbances from pressure holes near the leading edge.

These results help to confirm that low Reynolds-number tests with transitiun incompletely fixed
give spuriously favourable lift curves by comparison with high Ronolds-number results. On the
other hand, by comparison with Fig. 15, it can be deduced that the effects of shock-induced
separation are less severe for the high Reynolds-nutiber tests than they would spuriously have been at
low Reynolds number with transition fixed near the leading edge.

The difficulties in simulating full-scale flow, vary in severity from one part of the range of
Mach number and incidence to another. This is illustrated by the results presentud in Fig. 18. The
curves without hatching are the loci of conditions, or boundaries, for which significant effects of
separation - defined by the rapid divergence of truiling-edgo pressure - wore first encountered in
tests on an aerofoil for three different Reynolds numbers. The wind tunnels and transition
conditions were the same as those described above for the results in Fig. 17.



The Mach number range has been divided into four parts, starting from the highest, I, which
stretches from just over 0.7 upwards, and progressing to IV, which stretches from about 0.56
downwards.

In range I, the separation was induced by a shock well back on the chord at relatively low
lift coefficients. Even for the lowest Reynolds number, transition could be fixed well back and
still be upstream of the shock, and, moreover, the pressure gradients at the rear wore at their
weakest for the given design. Model-A flows thus applied for all cases a the effects of Reynolds
number on the initial developments of separation were minimal.

In range II, with the shock having moved further forwards, transition was incomplete at the
shook for the lowest Reynolds number. The initial developments of separation-were thus postponed
in relation to the high Reynolds-number results. A more forard transition band may have been
beneficial for the upper part of this range but not for the lower part because it would almost
certainly have led to rear separations and the spurious results associated with model-B flows.

These spurious results are evident in range II. The presence of rear separation for lift
coefficients above about 0.6 is indicated by the appropriate hatched lineM.

Rear, separation was present even for the highest Reynolds numbers in range IV, and it is diffi-
cult to know just how closely the results for these would be representative of full scale. As one
moves downwards in Mach.number in this range, one approaches the regime of low-speed stall which
could involve some rear separation even at full scale. The correct simulation might therefore
involve the simulation of the rear separation itself and its interaction with any development of
local supersonic flow13 and shock waves that may be present near the leading edge. As far as the
authors know, there have been even fewer systematic studies of scale effects in this range of Mach
numbers than in the others.

(c) Swept wings at different Reynolds numbers

Relevant results are available for a wing with 550 of sweep for which the shock-induced
separation occurred at low supersonic speeds. The flow was then similar in principle to that for
an unswept wing or aerofoil at Mach numbers corresponding to the values of the component normal to
the leading-edge of the swept wing. More specifically, tests on the two-dimensional aerofoil
corresponding to the section shape normal to the leading edge of the swept wing have confirmed the
broad similarity between the two for the pattern of occ rrence of the shook-induced and rear
separations that were present in the model-B type flowsf. Furthermore, none of the tests on less
highly swept, subsonic wings to which the authors have had access has revealed any features that
would run counter in a broad qualitative sense to those herro described for aerofoils at one extreme
and for the 550 swept wing at the other.

The results shown in Fig. 19 were obtained in the NPL 25 in x 20 in tunnel (0.63 m x 0.51 m) -
the lowest Reynolds number - and in the ARA 9 ft x 8 ft tunnel (2.74 m x 2.44 m) - the two higher
Reynolds numbers. Transition was fixed upstream of the shock in all cases.

The basic section was such that the adverse gradients in the downstr amflow produced a
tendency to model-B flows. Thus, for the lowest Reynolds number ( 2 x 10 ), rear separation was
already present at the lowest M4ach number (0.9), that is, before the appearance of a shock wave.
For this Reynolds number, therefore, one would expect the effects of shock-induced separation to be
amplified in a model-B3 type of flow. The differences observed between the results for this
Reynolds number and those for the higher ones confirm this, and are strikingly similar to the
differences between tunnel and full scale shown for a subsonic sweet wing in Fig. 6, and between
two different transition positions shown for a two-dimensional aerofoil in Fig. 12.

In all these cases, the differences can be attributed to the effect of differences in the
thickness of the turbulent boundary layer approaching the shock.

In the present case, the detailed form of the curve for the lowest Reynolds number at
M9 = 1.145 suggests that the rear separation spread right forward to the shock at an early stage,
linking either with a small bubble (model B3a) or with the shock itself (model B3b). Results are
not available at close enough intervals of Mach number to resolve this difference.

The increase in M, from 0.90 to 1.145 produces an interesting chapgo also in the differences
between the curves for the two higher Reynolds numbers ( 8 and 12 x 100). At Mo = 0.90, a small
difference in the rear separation is just discernible in the pressures near the trailing edge, but
this difference is significantly magnified at Mo = 1 .145, indicating the great extent to which the
rear separation amplifies the differences in the degree of disturbance at the foot of the shock.

K The roar separation disappeared as Mach number increased above a certain value because of
favourable changes in pressure gradient - ai. hence boundary-layer growth - upstream of the ihock.

Of course, for this highly swept wing, the spanwise drift in the separated flow itself tended to
aggravate the severity of the separation, and the shock and separation positions at any given
spanwise station were subject to jome influence from other parts of the span.
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The resulting difference in trailing-edge pressure at M o = 1.45 could be sufficient to produce a
significant difference in circulation. In this case, however, the position of the shock itself was
not affected. By the time the free-stream Mach number had increased to 1 .35, the separation was
fully developed from the shook to the trailing edge with little difference remaining between the,
two Reynolds numbers.

5. Concluding remarks

For flows that conform to the original model A, the pattern of development depends primarily
on changes in the immediate vicinity of the shock, and more on those in the external flow adjacent
to the separating boundary layer than on those in the boundary layer itself. This applies
particularly to the rapid rearwards growth of the shock bubble and to the manner in which the rapid
growth starts at a particular stage. It follows, therefore, that for a given shock strength, at a
given condition of free-stream Mach number or incidence, the whole shock-induced phenomenon is
relatively insensitive to scale effects, and to differences in boundary-layer thickness or profile,
provided the boundary layer is turbulent at the separation point. The full-scale pattern of
development can thus be fairly readily simulated in wind, tunnel tests.

For model-B flows, on the other hand, the rear separation - already present or incipient when
the shock and the separation at the foot of the shock appear - modulates the rate and magnitude of
the'development, and in mar cases dominates it.

The rear separation at first increases rapidly in severity as the disturbance at the foot of
the shock increases, and then links up with this disturbance to modify it directly. This inter-
action between the two separations produces a significant amplification of the effects of the
disturbance at the foot of the shock. The amplification applies in a broad sense to the pattern of
development with increasing Mach number or incidence for a given upstream boundary layer, and in a
more specific sense to the differences that are introduced by differences in the upstream layer for
a given Mach number or incidence. In the broad sense, the repercussions on the circulation about
the aerofoil or wing appear earlier than they otherwise would, and in a magnified form. In the
specific sense, small changes in the disturbaice at the foot of the shock,, resulting from differ-
ences in the thickness or profile of the boundary layer approaching the shock, assume much greater
significance than they otherwise would. It is the amplification of the effects of such changes
that, it is postulated, leads to the greatly increased sensitivity to scale effects and to the
increased difficulty in achieving correct simulation in wind-tunnel tests.

Recent evidence confirms that a boundary layer that is laminar as it approaches the shock leads
to an interaction that ca.,not be relied upon to reproduce full-scale conditions4 . The example shown
in Fig. 20, from some current tests, is typical of the spuriously favourable effects that are
produced when the boundary layer is on the point of transition at the separation point.

The prime requirement for correct simulation thus remains a boundary layer that is turbulent
at the point of interaction with the shock. It is now also clear, however, that there is a further
requirement of almost equal importance and generality: this turbulent layer must be of a thickness
that is not so magnified in relation to full scale (and must have a profile that is not so distorted)
that after interaction with the shock it will provoke a rear separation that would not-be present at
full scale, or will increase significantly the severity of such rear separation as might be present
at full scale.

To achieve this second requirement for the cases in which rear separation would not be present
at full scale, i.e. model-A would apply at full scale, tunnel Reynolds number should be high enough
for transition to occur naturally at an appropriate point or at least high enough for transition to
be provoked artificially with a minimal disturbance. Transition has to be complete upstream of the
shock but it need not be as far forward as it would be in full scale. The difference in transition
posit ion can thus be used to offset the effect of the reduced Reynolds number of the wind-tunnel
tests. Moreover, for many cases, the relative thickness of the turbulent layer approaching the
shock could be greater than for full scale without provoking the offending rear separation.

The difficulties of achieving either of these alternatives will tend to increase with a number
of factors.

First, as attention moves from cruise lift coefficients with shock waves that are well aft on
the chord to ligher lift coefficients and lower Mach numbers for which the shocks approach the
leading edge, a, the raxge of difference in transition position that is available for compensating
the effects of reduced Rbynolds number becomes smaller and smaller.

Secondly, the same increase in lift coefficient will increase the pressure pradients in the
downstream flow and herce reduce the margin of boundary-layer thickness for which rear separation
can be avoided.

Finally, the current trends in design towards ultimate limits of acceptable adverse pressure
gradient are reducing the margin of boundary-layer thickness for which the spurious rear separations
can be avoided oven at cruise lift coefficients.

If one turns now to the cases for vdiich some rear separation is present oven at full qcale
(i.e. modol-B flow applies at full scale), the simulation of the full-scale tattern for the
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development of shock-inducea separation would appear to present formidable problems. There might,
for example, be no ieal alternative to reproducing the actual boundary-layer thickness at the foot
of the shock and hence to a close approach tc full-scale Reynolds numbers. This is tantamount to
suggesting that higher Reynolds numbers will be necessary, than those that are used to give
realistic values of CL max in the low-speed stall for which rear separations, in the form of rear
stall, are very frequently inherent. The underlying Justification for such a suggestion is that
the shock-induced separation upstream of the rear separation introduces a critical factor that is
not always present in the low-speed stall.- The scale effects are larger as a result ad may not
decrease to negligible proportions until the highei Reynolds number is rmached.

Xr~such cases, and also for the cases where it was suggested that there would be no margin of
boundary-layer thickness (relaxive to wing chord)above the full-scale value for which rear
separation could be avoided, some further systematic theoretical investigations of the type made by
Thomas would be a valuable complement to the additional experimental work that is clearly
desirable. Such investigations -could, for example, be based on a flow model in which the turbulent
boundary-layer growth up to rear separation could be studied in the presence of representative
pressure gradients, with a rapid gradient representing the shock superimposed on the more gradual
adverse gradient. Boundary-layer thickness, Reynolds number and pressure gradient could be varied
parametrically. It is difficult to envisage that the precise nature of the disturbance at the foot
of the shock could be introduced theoretically, especially since this usually involves a separation
bubble that is critically influenced by the form of the compression from supersonic to subsonic
flow, but the effect of the disturbance could probably be simulated by a variable disturbance to
boundary-layer thickness ana profile.

In the meantime, the evidence available to the authors is inconclusive as to what value of
chord Reynolds number may ultimately have to be used to eliminate the scale effects of the type now
being encountered. But 6this could well be at least of an order of magnitude greater than the value
of about 1 .5 to 2 x 10 that was acceptable when the original flow model was applicable for all
condit ions.
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The paper sumarises recent advances in practical methods for predicting pressure distributions
on aerofoils in two-dimensional sub-critical flows. First, a finite differenoe method is described
for solving numerioally the full equations of motion for compressible flow, starting with a con-
formal mapping of the region exterior to the aerofoil onto the inside of a circle. Next, it is shown
how standard second order theory can be modified and extended to provide a rapid approximate method
which gives adequate accuracy for most aerofoils up to the critical Mach number; several comparisons
with exact theory are given. Finally, an iterative method is described for estimating the effect of
viscosity, calculating successively the displacement effect of the boundary layer and wake on the
aerofoil pressure distribution, and the development of the boundary layer under a given external
pressure distribution; several comparisons are given with recent experimental results.
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I. Introduction

An essential item in the equipment of an aircraft designer or project engineer is the capability
of predicting accurately the pressure distribution on an aerofoil in a real compressible viscous

flow; the information is needed for example in the estimation of drag-rise Mach number or the cal-
culation of profile drag - in either case at a given value of the lift coefficient or incidence.
Now it Is clear that in practice the development of the flow field about an aerofoil is crucially
dependent on two effects, oompressibility and viscosity; and this fact has made the problem a
difficult one to solve satisfactorily, even for sub-critical flow. In the past it has been neoessaj
to rely on a variety of approximate or empirical methods for the invisoid part o the problem, all
of doubtful vaUdity ndalthough the general principles whereby the influence of viscosity can be
obtained, through the displacement e-fect of the boundary layer and wake, have been known for some
time (see e.g. Ref. 1i), it has not ireviously proved feasible to incorporate these efficiently into
a practical calculation method.

In t~e past few years important developments in invisoid theory have been made by Sells and
Nieuwland , using advanced numerizal methods in conjunction with the full equations of motion for a
perfect gas; and these have at last enabled us to break the vicious circle that has previously
bedevilled the problem, by removing the empiricism from one half of it. It has thus booome possible
to effect a major improvement in accuracy in a rapid approxmate theory for inviscid flow, using the
'exact' numerical methods as a check; and then to incorporate this method into an iterative procedure
for calculating the effect o. the boundary layer on the pressure distribution, by applying the
prinoip2a mentioned above in conjunction with an appropriate calculation method for laminar and
turbulent boundary layers.

The purpose of the present paper is to give a survey of the developments mentioned in the
.previous paragraph. First, a brief account is given of the principles used in the 'exact' method of
Ref. I for the invisoid problem. In the next section it is shown how standard second order theory
can be modified and extended to give acceptable accuracy for most aerofoil shapes up to the critical
Mach number, and a number of comparisons with exact results are given. In the final section we
describe a method for estimating the major effects of the boundary layer, and conclude with comparisons
with experimental results for two aerofoils over a range of Mach number and inoideuoe.

2. Numerical method for the solution of the full equations of motion for invisoid compressible flow

The method, which is described in detail in Ref. 1, depends on the existence of a conformal
mapping of the aerofoil and its exterior in the z plane onto the unit circle and its interior in
the o plane; we will assume that such a mapping has been done, numerically or analytically. Then
plane polar coordinates (r, e) are sei up in the circle (o) plane and a uniform grid in these
variables is used as a computing grid (see sketch (a) this has the ad.ntage that in the physical
(z) plane the grid is refined near the nose and tail, where flow variations are greatest (see
sketch (b)).

Sketch (a): Regular grid in the working (a) plane

Sketch (b)t Grid in the physioal (,) plane
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The equations to-be solved are:

the equation of continuity dir (pg) = 0 , ... (2.1)

the equation of irrotational flow ourl 2, 0 , **. (2.2)

and Bernouilli's equation for isentropic flow, written in the form

-2 7 = -,(2.3)
(Y-1) F (y-1)NI3

where p is the density (soaled with respeot to free stream density)
36 is the free stream Maoh nmnber

is the local velocity (soaled with respect to free stream velooity)
and y is the ratio of specific heats.

Taking pq = f (the local mass flow)
and r = p/po (suffix o indicates stagnation conditions)

Bernoulli's equation (2.3) can be re-written in the universal form (independent of Maoh number)

p= 2(j_.z-) . ... (2.4)

where P = (y-1) f'(po'a.) .

The continuity equation (2.1) admits the introduction of a stream function *, such that

u = -- -U =r ph 2 ae phi ar

where u , ua are the velooity oomponents in the pbysioal plane normal to the curves corresponding
to r = oonstEnt, 0 = oonstant respectively in the c plane (see sketches (a) and (b)), and hi,
h 1  are the ourvilinear metrics, given by hi = B

h = rB

and B =dcE

The equation ofirrotational flow (2.2) oan then be written in the form

8 r 8 18+a *-- - + .. . 0....(2.5)
ar p ar ae rp ae

Finally, the mass flow f is related to the stream function by

.. ... (2.6)

Before the fundamental system of equations (2,4), (2.5) and (2.6) can be solved numerioally, it
is necessary to consider the singular behaviour of the stream function at the oentre of the tasio
circle in the T plane, corresponding to the 'point at infinity' in the physical (z) plane.

It can be shown (see Ref. 1) that near r = 0

I

S -- sin (e+u) + Kin r - ' E in [i-A a&x2 (O+a)] + p +O(r) ... (2.7)
r

and that

VA E sin (6+a)
p -r o(r)j ... (2,8)i-_1 si a (e+a,)

here c is the agle of incidence of the aerofoil and E and P are constants, to be determined
as part of tle solution. It is seen that the stream function has two singularities at the oentre of
the oirole; the first, of dipole type, corresponding to the undisturbed stream in the pbysioal
plane, anl the second, of vortex type, due to the circulation round the aerofoil, The constant
E is in fact directly related to the ciroulation r, by the equation

27.Z
r i odi(2i9)

and is deferrals& by satiaf'j;ug the Kutta condition of zero velocity at the trailing edge of the aerofoil.
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In order to arrive at a numerically regular problem, the two singular terms have to be
subtracted from 4, giving a modified stream function

I

X(r,e) + - sin (+a) - In ... (2.0)

which is finite everywhere but whose value at r = depends on the angle Ot

X(o,e) - E In [i-_i sin* (e+a)] + ... (2.11)

The oorresponiing boundary condition on r = Is, derived from the condition = 0, is

x(t,e) - sin (e+a) ... (2,12)

The two equations (2.5) and (2.6) involving * are written in terms of X, and all partial
derivatives occurring in these eqaations are replaced by central differences on the uniform
(rO) mesh in the o plane (see sketch (a)); the truncation errors are thue of second order in
mesh size. There are four basic unknowns to be determined% the stream function *(rO) (or the
modified X), the density ratio p(r,e); the circulation parameter E; and the parameter

The solution proceeds iteratively starting with the basic elliptic partial differential
equation (2,5) (written in terms of x, together with the boundary conditions (2.11) and (2.12).
The resulting difference equations are soved by block Gauss-Seidel iteration (see Ref, I for
details)* Next, the Kutta condition is used to calculate the parameter E; and the second
parameter P is determined by means of Kelvin t s circulation theorem, thus ensuring that the oircula-
tion round any basic oirouit, corresponding to r = constant in the c plane, really is r.
Finally, the density p is found from equations (2.6) and (2.4); and the whole process is repeated
until convergence is obtained.

The criterion used for convergence is the density ratio p; since it changes rapidly when the
local Mach number M approaches unity, but only slowly when M is small, this test is coarse for
near-incompressible flows but is delicate for near-oritical flows. When M exceeds about 0*8 it
is necessary to employ under-relaxation in the iterative matrix solution for the modified stream
function X. If a superoritioal case is attempted, the under-relaxation factor (which is auto-
matically modified in the program) decreases rapidly, and when it is less than 1/16 the computation
stops. With under-relaxation factor of 1/16 solutions with local Mach numbers of 0.98 to 0.99 are
attainable.

In a problem of this nature, with no exact solutions available for comparison, it is difficult
to arrive at a precise estimate of the accuracy to be expected, From various internal checks that
have been applied it appears that with the mesh size commonly used (10 elements in the r direction,
60 in the 0 direction) the error should not exceed i% in perturbation velocity, and in most oases
should be considerably less; though it must be stressed that the accuracy of the compressible
calculation is vitally dependent on extreme accuracy in the initial conformal transformation.

A useful independent check is also provided3 by a comparison with the third order solution for an
ellipse at zero incidence, obtained by Hantzsohe ; this is given in the table below (see also Fig. 1)

Table I

Maximum velocity on ellipses at zero incidence

a) t/o = 0.10

Numerical method 3rd order Approximate method
(Sells) (Hantzsohe) (WIlby : equation 3.2)

0.4 1.1111 1.1104 1.1100
0.5 t.1178 1.1178 1.1176
0.6 1,1292 1.1295 1.1297
0.7 1.1914 1.1500 1.1511
0.8 1.2006 1.1956 1.1990
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b) to, 0,20

up Nuerioal method 3rd order Approximate method

014 1.2239 1.2235 1.2220
0.5 1,2405 1,2410 1.2398
0.6 1.2691 4.2706 1.2710
0.7 1.3324 1.3280 1.3338

It is clear that the agreement between the present numerical method and third order theory is
excellent except at the highest Mach number in each case, when (since the maximum local Mach
number is about 0.98) even the third order expansion would not be expected to be sufficiently
acourate.

Further examples obtained by the numerical method will be given later in connection with the
approximate method to be described in the next section.

3. Development of a new approximate method for inviscid flow

The basic two-dimensional invisoid problem can be solved numerically (for suboritioal flow) to
a high degree of aoouz.acy by the method described in the preoeding section. For practical application,
however, particularly to aerofoils in a real viscous flow or with a view to possible extensions to
three-dimensional wings, it is still essential that an adeqate rapid approximate method should be
available; and the advent of 'exact t numerical solutions has revealed that no existing method is of
sufficient accuracy for this purpose. It is therefore necessary to adapt and extend the existing
second-order tsmall disturbance' theory, using the exact solutions as a guide.

We start from the standard second order solution for the velooity on an aerofoil in compressible
flow due to Van Dyke 4 or Gretler 5 , which may be written in the form (valid away from the leading
edge)

q= I +u/P+ (K1)iu +K (u, +YV + Y') ... (3.1)

0 x

x-,

rc

Sketch Wa

Here

3W is the free stream Mach number,

4P

Y is the local aerofoil ordinate (seesketoh (0))

Y1y. are its first and second derivatives with respect to x
and ul, ux are respectively the first and second order vlooity perturbations in the x direction
on y 0 for incompressible flow. These can be expressed in terms of the basic integrals*

S() < f(x) > .. .. ,

*Using the notation of Weber (see e.g. Ref. 7, pp 46-47)



12-5

and SW~ < f(X) - 4 p f J1.3 a,

0?

as fooll (alternative signs denote values on the upper and lower surfaces respectively)-

u, = ut"

where ult= S <y >
Yt

and Ujl = a +S (4 ) < Ya >

and u2 = uZt ± u2 1

where ult = - a2 +S2 cut Yt +u1
l  Ye >

-- s¢ ') < Ut + t •  o
and U23 S(4) <ul y Ull >

here Y and Yo are respectively the half-tickness and camber ordinates of the aerofoil (see
sketch

The values for the maximum velocity on ellipses at zero incidence, predicted by equation (3.1),
are shown in Fig. I where they are compared with the exact results of Sells and with the third
order theory of Hantzsohe 3; it is clear that second order theory is inadequate for near-critical
oonditions and that some allowanoe must be made for higher order effects. It was pointed out by
Wilbyv that a good approximation to these effects could be obtained empirically by replaoing the
terms

u,/P + U (K-I) ,'

by the expression

ul/B ... (3.2)

where B = 1 a (-M .C i

and Cpi is the local incompressible pressure coefficient. Corresponding values of the velocity
ratio q are gLven in Table I (p.3) and shown in Fig. 1, and are seen to agree closely (to better
than 1% on perturbation velocity) with the nominally exact values obtained by Sells' method.

For the ellipse at zero incidence at the maximum thickness position, the remaining second
order terms in equation (3.1) are identically zero. In other oases, partioulary when lifting
effects are to be included, these terms must be retained. For the present the factor X which
multiplies them is left unaltered, giving

q = 1 + u,/B + X (ua + Y. + jY12) ... (3.3)

where B is now defined using the local value of Cpi derived at the same incidence.

In order to make this expression uniformly valid at the leading edge, we write it in the form

q = 1 + u,/B + K (u,. - 'Y13) ... (.-)

where u10 = u 2 + (y')*
dx

Here uxC behaves like ul at the leading edge; it is finite for symetrioal cases and 0(x - )

in lifting oases. Equation (34) at once suggests the equivalent uniformly valid approximation

I + ul/B + K u2*
q = - ' ... (3-5a)

In this expression the denwlinator is similar to the Riegols factor used in incompressible
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flow; the multiplier K which now appears is an essential feature of the present method, since it
provides the necessary distortion of the shape of the pressure distribution near the leading edge as
the Mach number increases. It has been found from experience that in lifting oases slightly greater
accuracy near the leading edge on the upper surface can be obtained bj replacing K in the denominator
by B2 (which is of the same order of magnitude; see Ref. 6), leading to

I + u1/3 + Kul*
q ( 31-+-b) ...

a similar replacement has also been tried in the numerator, but the differences produced are trivial in
most oases.

The incompressible second-order velocity perturbation u2* contains a number of terms; but in
oases where

a) the thickness form (particulary near the leading edge) does not differ too much from an
elliptical shape - and this is true of most 'standard' thickness distributions

and b) the curvature of the camber line is everywhere very small (or zero),
then all but one of these terms (the one due to the interaction between thickness and incidence)
may be safely neglected, leading to a simplified version of the basic formulae which may be written

I + SO ) + S(  + a/B 2

B B
q " (1 ~+ Y ,, )7 . (.°

the functions S('), P) and S( 4) are as defined in Ref. 7 (p.47), and the alternative signs
refer as usual to the upper and lower surfaces respectively. This simplified formula has been used
in the theory for viscous flows which follows in section 4.

In all oases the pressure coefficient C is finally calculated from the velocity q by means
of the standard isentropic flow relation P

2 - Y2i [ + (-1) )a (1-q')] 7-.

E ... (.6)

In Figs. 2 to 7 some comparisons are made between the approximate theory described above a
the exact numerical results of Sells (Ref. 1, see section 2 of the present paper) and Nieuwland ;
some other approximate theoretical results are also included.

First, some further examplen are given for ellipses. Fig. 2 shows the overall pressure distri-
bution for t/c = 0.2, a = 0, M-D = 0.7 (near the oriticalvalue). The superiority of the present
method near the maximum thiokneLs position is oarm6d; further forward the distortion of the shape
of the pressure curve due to compressibility is still slightly underestimated (so that the local
velocities are overestimated), but the errors remain small. The next twe figures (3 and 4) refer to
an ellipse with t/c = 0.15, Mw = 0.68 at incidence a = 20, with the rear stagnation point fixed
artificially at the trailing edge. In this case the load distribution (Fig. 3) is well predicted
by the present method, as is the overall pressure distribution (Fig. 4); but the velocities
on the upper surface just aft of the leading edge (near the peak suction position) are again slightly
overestimated just as at zero incidence (of. Fig. 2).

The remaining examples refer to practical aerofoil shapes, as fonws:

Fig" 5 RAE 101 (unoambered) .10 20 .655
Fig, 6 XL 3111 (cambered) .14 1.20 .667
Fig- 7 Quasi-elliptic (Ref. 2 - negligible camber) .16 3.50 .614

In the first two oases the Mach number is Just sub-critical, and in the third just superoritioal. In
all cases the agreement between the present method (equation (3.5b)) and the exact solutions is reason-
ably good; the chief discrepancies are usually near the leading edge on the upper-surface where the
velocities tend to be overestimated when the pressure curve is of 'roof top' type (Fig. 6) but
underestimated when there is a high forward suction peak (Figs. 5 and7). In Fig. 6 are also included
the results from the simplified formula (3.50), which in this case happens to be better on the upper-
surface near the leading edge, but worse near the position of maximm velocity; and in Figs. 6 and 7
the results from a former widely-used method (Ref. 7, section 6.1, equation (44)) are biven to
demonstrate the order of improvement now obtained.

The results given here are typical of the order of agreement between the approximate and exact
theories that have been obtained for a wide selection of aerofoils. It should however be mentioned
that there are casesonotably whex, the leading edge shape is particularly blunt, when the approach
suggested above - essentially an extension of second-order theory - fails near the leading edge 8
even in incompressible flow, $n such cases the device suggested by Labrujereo, Loeve and Stioff ,
who bass their method on an exact (rather than second-order) solution for incompressible flow,
should prove advantageous in conjunction with the present method.
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4. Viscous flows

The general principles of the-way in which the lift and pressure distribution of an aerofoil are
altered by the presence of an attached boundary layer are well known (seo for example Ref. lip C 17)#
The principal influenoe is the displacement effect of the boundary layer and wake; and this can be
estimated to a first approximation by caloulating the invisoid flow about the net displacement
surface, as shown in sketch (d), the circulation being fixed by the condition that the velocities at
the upper and lower edges of the boundary layer at the trailing edge shall be equal.

y

Free stream PI

w

Sketch (d)

It is desirable for computational purposes to modify the criterion that is used to fix the
circulation, replacing it instead by the condition that the velocities should be equal at the edges
P1, Pa of the displacement surface, rather than at the actual edges of the boundary layer; this is
equivalent to first order to applying the Kutta condition a t the trailing edge of a fictitious
equivalentoamber line (see sketch (f) below).

It is then possible to treat the invisoid flow about the displacement surface by small perturbation
theory, and to split it into two parts:

(a) Symmetrical flow (at zero incidence) about the thickness part of the displacement surface
given by y=± Yt , where

Yt = Yt + (6u" * + ")  (0 4 x 4 1)

7 * (M ) ... (41)

°lz CD

stream

Sketch (e)

where 5 , 8 and 8 * are the displacement thicknesses of the upper and lower surface boundary
layers and of 1e wake. w

The first order perturbation velocity is given, just as in the invisoid case for an aerofoilby

I , a yto (g)
ult * = - 4.. (4.2)

70 X

the only differenoe being the extension of the range of integration to infinity to take into
account the thickness effect of the wake.

The boundary layer displacement thickness over the aerofoil can be calculated (when the external
pressure distribution is known) by any sufficiently accurate method. The calculation of the displacement
thickness of the wake is a more difficult roblem, which has not jet been solved. To overcome this
difficulty it has been suggested by Powell that 8w* should be estimated by interpolation between
the calculated shape of the displacement surface (aarofoil + bounday layer) ahead of the trailing
edge, and the know, value & * a* C- at infinity downstream assuming continuity of slope of the
displacement surface at the Grailing- edge.

+This rolationship is precisely true only for incompressible flow1 2, but for the suberitioal Mach
nmubers considered in this paper no appreciable errors will be introduced by this assumption.
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It has been foxnd from experience that the predicted distributions are not particularly

sensitive to the assumed shape of the wake, and the further simplification has been made of
assuming that the wake thickness attains its asymptotic value (1 I C ) at a finite distance X

downstream of the trailing edge. The computation is then simplified as the interpolation can be
done by means of a simple cubic polynomial (see Ref. 9 for details).

Equation (4.2) is thi modified to

/1,xt. ... (4.2a)t"
%0

(b) Anti-sumvetrioal flow about the distorted camber line, given by

1oe = Y + j (8 -6 )

distorted
camber line

Free 
Cstream aeCrofoil (5:- U

camber line

Sketch (e)

This is equivalent to an effective change of incidence to a = a + Aa, where

0*(I) = - 1 (6u. - Il")'..

and an effective camber ys ye - x Y (t)

The corresponding first order velocity perturbation is thus

UTx : li+S(4) (Y 4 > .. (43)

the Kutta condition at the fictitious trailing edge having been used to fix the circulation.

Finally, the first order velocity perturbations derived from equations (4.2) and (4-3) are
combined, together with the principal second order (thiokness/inoidenoe) term and compressibility
corrections as described in section 3, to give the velocity ratio

1 +]- Eut * Y( * • - - - t .-- -
B B

q .......I..) "' (4-4)

an expression precisely analagous to the 'simplified' formula (3.50) above.

To develop a procedure for performing the calculations at initio, it is necessary to iterate
between successive calculations of a) the invisoid pressure distribution over the displacement
surface (using equation (4.4)) and b) the boundary layer d v opment for a give pressure distri-
bution (the 'local equilibrium' method of Nash and -aodons d U T ) has been used for the oaloulations
presented in this paper), staeting, with a modifkd invisoid pressure distribution for the basic
aerofoil as a first approximation.

A computer program has been written which requires as input

(i) aerofoil ordinates
Angle of incidence, Reynolds number and Mach number

(i Transition positions on the two surfaces.

Some under-relaxation is necessary to obtain adequate convergence, the calculation requiring
about 10 iterations. The output from the program includes overall lift coefficient and pressure
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distribution, boun-ary layer characteristics and drag coefficient.

As no reliable method exists for predicting the transition positions, these must be specified
in advance. Experience has shown that in general the predicted pressure distributions are comparatively
insenitive to the transition positions. The calculated boundary layer, assuming continuity of
momentum thickness, has a disoontinuity of 8* at the specified transition position. In the itera-
tive process thus discontinuity is smoothed out in a simple way.

The method described above has been found to give good general agreement with measured pressure
distributions, particularly if the comparison is made at the same value of the lift coefficient. The
situation with regard to prediction of the lift coefficient (and the detailed pressure distribution)
at a given in6idenoe appears to be confused. It has been a matter of general experience that in the
case of experiments made in solid walled tunnels, with standard lift-interference corrections applied
to the measured incidence and lift coefficient, the simple 'boundary layer cambert model used in the
present method usu4aUly overestimates the lift coefficient at a given incidence (i.e. underestimates
the reduction in lift produced by the boundary layer) by up to about 5% of total 0 at incompressible
speeds (see e.g. Ref. il, p.19 6 Table V.2), rising to perhaps 10% near the criticalMach number;
a similar conclusion has also been reached in the majority of slotted wall tunnels. On the other
hand the careful experiments made recently by Firmin and Cook 12 in the 8 ft x 6 ft (2.4. m x 1.8 m)
tunnel at RAE Farnborough, using models of different size with both slotted and solid wall
configurations, led to corrected experimental values of ?L which were actually slightly ligher
than the corresponding theoretical values (see Ref. 12, Fig. 10). There is thus a need for further
research on wind tunnel interference on lifting aerofoils.

In view of the situation described in the previous paragraph, all comparisons with experiment in
the present paper will be made with the incidence used in the calculations adjusted until the lift
coefficient agrees with the experimental value. We have chosen as examples two aerofoils considered
in section 3 above, for both of which extensive pressure measurements have been made recently at the
Royal Aircraft Establishment by FirmIn and Cook*; those are the 10% thick RAE 101 (unoambered) and
the 14% thick NPL 3111 (cambered). Results for the RAE 101 aerofoil at a = 20 nominal (about 1.80
corrected), at Mach numbers 04. and 0.675, are shown in Figs. 8 and 9; and for the IPL 3111 aerofoil
at Mach numbers 0.4 and 0.67, over a range of incidence, in Figs. 10 to 12. It is clear that the
general level of agreement betmeen theory and experiment is ver- good, and can only be faulted very
close to the trailing edge and over small regions of the upper surface. The discrepancies near the
trailing edge (see in particular Figs. 8 and 9) may be due to deficiencies in the simplified model
assumed for the displacement surface, both in the boundary layer just upstream and in he wake
downstream of the trailing edge; they could probably be removed by modifying this model in the
light of recent experimental measurements of the boundary layer and wake such as those reported in
Ref. 12. On'the other hand the discrepancies further forward on the upper surface, near the suction
peak induced by incidence (Figs. 8, 9 and 10) or further aft near the maximum thiokaess position as
the critical Mach number is reached (Fig. i) are mainly due to errors in the approximate invisoid theory
used in the calculation method (of. Section 3 and Figs. 5 to 7). In the final figure (Fig. 12)
it is shown how, at least in one particular case, a further small but significant improvement in the
agreement between theory and experiment can be achieved by adjusting the theoretical result to allow
for the difference between the approximate (equation 3.5o) and exact (section2) theories for inviscid
flow about the same arofoil at the same lift coefficient (see Fig. 6).
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- SOMMAIRE -

Cette co:munication a pour objet 1'4tude des r6partitions de vitesse d'extrados pr~sentant un pic au
voisinago du bord dtattaque. Ii est bien connu quo ce typo de r4partitions apparatt toujours lors de
la mise en incidence des profils, mais on pout 6galement l'imposer h lincidence d'adaptation. Dens
le premier cas, l'importance du pic r6git les d~collements de bord d'attaque, aux basses vitesses et
aux portances 6levdes ; dana le second cas, aux portances modr4es du vol & grande vitesse, ce pic
ddtermine Is m6canisme de la formation des chocs.

Pour prciser ces problbmes, une famille de profile symtriques a 6td d6finie, h partir de lois do
r~partitions do vitesse imposaes en incompressible, h incidence nulle, en fonation de la position

-St de l'intensit6 du pio ainsi que du gradient de recompression qui lui fait suite.

L'6tude de l1'volution de la courbure dans la r4gion du bord d'attaque des profils calculds a permis
de les classer en 4 grandes catdgories. L'analyse expdrimentale doit permettre une critique des
qualitds adrodynamiques de tels profils aussi bien aux basses vitesses (portance maximale) qu'en
transsonique (Mach do divergence en tratnde et en portance).

Lee premiers rdsultats expdrimentaux prdsentds sont relatifs aux essais dans Is domaine transsonique.

EXPERIMTAL RESEARCH ON SUPERCRITICAL WING PROPILE

- SUMMARY -

The purpose of this paper is to study some upper-surface velocity distributions having a peak near the
profile leading-edge.

It is well known that this type of distribution always appears when profiles are at incidence but it
can also be imposed at the design incidence. In the first case the peak governs the separation at the
leading-edge, at low speed and high lift ; in the second case, at the moderate lift encountered at
high speed, this peak determines the mechanism of the shock formation.

To examine these problems, a family of symetrical profiles has been defined, starting from velocity
distribution laws in incompressible flow, at zero angle of attack, as a function of the peak position
and intensity and also of the following recompression gradient.

The study of the evolution of the curvature in the leading-edge region of the calculated profiles, led
to classify them into four main categories. The experimental analysis aims at criticizing the
aerodynamic qualities of such profiles at low spoed (maxim.m lift) as well as in the transonic range
(drag and lift divergence Mach number).

The first experimental results presented concern testa in transonic flow.
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IL Ela=T EN PRATIQUE deux docaines oZL lea phdnombnea transsoniques Uli itnt la performances d'uxle

voiuro (Planche 1).:

- aux portances dievdes et aux nombree do Mach foibles,

- aux partancos moddrdoa ou nulles et aux grandes vitesses.

AUX GRAND INCIDENCES un pic do aurviteese s ddveloppa dens l.a rdgion du bard d' attaque ;hpartfr
d'un nombre do Mach No de 0,3 environ ot dlune portance do l'ordro do 1, une zone auporsonique apparait
dana cetto rdgion. un ddcollement do Is couche linite slensuit en gdndrali dd prababloment b, Ia forma-
tion d'un choc, qi. provoque une chute prdcoos do la portarce.

Ce phdnomane so rencontre notamment & 1' extrdmitd do Ia palo reculante d'un rotor' ot limite a capacitd
sustentatrice. Por le comproror et essayer do 1s retarder une 6tudo trbs complbto do la rdgion du bord
d'attaque doit Otre faite.

AUX PORTA1NCES 1N0DEM au faibles et aux grandes vitesses, une zone suporsanique dtendue se ddveoppo
h I'extradoo do i'ailo (et aussi h l'intradoo pour los portancea faibles). L'apparition des cho~s
entrains un accroissenent de tratnde et provoque 1e ddcolloment do la couche unmite et par md-to uzu
chuto do Ia portanco, et des variations du moment do tangage;aux foibles portances los ddplacoments
diffdrents des choca h 1' intrados et h 1' extradoa pouvent Otre aussi h 1' origino do fortes perturbations
do ce noment do tangage.

Ce domains intdresso lea avions do transport subsonique , sinai quo 1' extrdmitd de Ia pale ayasanto
des rotors.

Pour retarder con troubles transsoniquos on a cherch6 h obtonir des profile pouvant adImettre use zone
supersonique importanto sans chos suffisammont intonses pour ddtdriorer lea performances.

Des travaux effectuds au N.P.L. (1] ont montrd qu'il existait do tale profilo (profila do typo "peaky").

En particulior, supposons quo Ia gdomdtrie d'un profil soit tell. qu'un faisceau d' andes do ddtent. asee
intense prenna naissance au ddbut do Is zone supersonique (Planche 2) ; ces andes vonh, so rdfidchir
sur Ia ligne sonique en ondes do compressions do m~no iritonsitd qui, si ellba no focalisent pas avant
dlatteinuiro la surface, sly rdfldchirant en ondes dont Is nature et llintonsitd ddpendent do is courbure
du profil d=n la rdgion dlimpact ; pour une certaine loi do courbure, qui ddpond do l'5.ntonsit do Is
ddtento initial., on pourra notamment obtenir une recomprossion par ondes simples.

ILorsqu' on possbde un profil fournissant un faisceau do ddtonte d' intenaitg convenable, il eet possible
do corriger ls courbure do l'etrados do manibre h tendre vera une recompression quasi isentropique
coest sinsi quo le H.P.L. a mis au point~ une mdthode approxinative simple, basdo sur Iv calcul des
caraotiriatiquoe, qui pormot, si Ilon commsit lea rdpartit ions do pression oxpdrimentaios sur le protil
do fairo catte correction. le prablbmo consists done h obtenir un faisceau, initial do Mdonte addquate.
11 faut h cot offat, quo ba rdgion do forte courbure du bard dlattaque colacide avec l'origine du
domaino suporsonique. Los rdpartitions do vitesse do tols profile -prdsenteront alors us pic prba du
bard d'attaque.

On constate donc quo, tant en trassonique qulaux bassos vitossee ls rdgion du bard d'attaquo joue us
r8lo prdponddrant. Aussi le but do 1' dtude dont on prdsento iai la premi~ers rdeuitats eat-il dtanalyser
los divers aspects do la formation de con pica do eurvitesee do leur dvolutian at de leur rdpercuseion.

DEFINITION D'UNS FAMILLE DE PROMIS PRESDA1?I UN PIC DE SURVITESSE

PRM DU BORD D'AflTAQUE

UBPE FANILIE DE PROMIS SYHBETRIQUES a dtd cabculdeoen incompressible, h partir do rdpartitions do
vitease h 1' incidence nuibo, dant lo pic prbs du bard dlattaque diffbre par s position xp , son
intonsitd V at enfin par Is valeur des parambtres lids h Ia ddcroissance plus ou moins rapide dio la
vitasso apr~s co pic (Planche 3 ):

- polir 0 x <z i a vitesso adtd prise sous laformeo -

- pour xp < x < xR =0,4 c la vitoeso oct donnde par uno dquatian ddpendant do doux parambtras lids
h la position du point d'inflexion I at h la pento on co point,

- pour x > xR la distribution do3 Vitoseos Got la n~no pour tous baa profile ella est lindairo
do x 0,45ao Zx 0,8 a.
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LE CAWUJL DE CES PROMSW z -Z(x) oat offectu4 d'aprba [2] en considdrant Ia vitesse sous In fame

avec co2cne valour approximative do - U 1 f d
Li~ A x, - 3 Sc

avee

L'inversion do 1'intdgrale pemet d' orprimer la pente du profil sous Isa forme

dZ. Zb __ _ __ _

oix zBp oet la deml dpaissour du bord do fuite. La vitesso 6tant dondecetto pento eat alors calcul~e
par itdrations.

L'errour comise par cotte m6thode oat faible et localiado dana une rdgion trbs preche du bard d'attaquo.
Una comparaison ontro ia rdpartition do viteass imposde pour le caicul d'un profil par Is mdthodo prdc4-
donte, ot la rdpartition ddterminde h partir d'uno distribution do singularitds diapoado sur le contour
decoe profil, montre natanmant quo i'intensit4 du pie eat un peu plus faiblo que pr~vu (Piancho 4 )

EU~i: DE LA REGION DUJ BORD D'M'WAQUE

La planche 5 montro lea differentes lois do courbure obtenues pour dos profils do la famillo ayant un
* pie do za~mo intenait4 as uno position (xp) diffdrento. La courburo est roprdaentdo en fraction do Y

angle do la vitesse avo ia direction Ox, co qui permet de dilater our la figuro la rdgion correspondant
au bard- d'attaque. On voit quo loraque 1e pie Be rapproche du bard d'attaque, la courbure en ce point
diminue ot son 6volution et totalenent diffdrento. On obtient des courbos analogues quand pour uno
position fixde du pic on fait varier son intenaitd.

On a pu ainsi rsettre on dvidenca quatro types principaux d' dvoiution do Ia courbure dana ia rdgion du
bard d'attaque. Ils eant reprdaentds sur la Planche 6, out Von a achmantiae des loin do courbures;
symtriques m ais il eat bien sdr poasible dsobtenir do part et d'autre du bord d'attaquo dour types
do courbures diffdrenta.

Lo typo n0 I Beat classique - La courbure oat naximaJle au bord d'attaquo (A) et ddcrolt ensuite rdgulib-
rement. Une augmentation au rayon aui bard dlattaquo, diminue lea variations do courburo ; d'autre part,
1e point d' nrrt 4voluo momns rapidosont en fonction do 1' incidence ; ausal lea pica do survitesses
aux fortes incidonces sont-ils en gdndral plus faibles. Il on rdauito qu' on incompressible ot. 10 gradient
do recompreasion eat plus faile, ainsi quo dana 1e domaine 0,3 < Ho < 0,5 o4i la zone suporsonique
apparatz plus tard, los ddcollenents do bord d'attaque sont retarddo ce qui entraine un ga dana les
perfomances.

La courburo, dana le type no 2 - eat nussi maximale en A mais son 6volution prdaente une variation plus
rapids h partir d'un cortain point P. Cette variation qui pout 8tre assea brutale eat intdressante en
tranasonique car olse pout pormottro d' obtenir in ddtente ndcassaire pour des profile du typo "peak~y t .
Aux basses vitesses et aux incidences croissantes, sulvant in position do P at ilal do courbure en
amont do ce paint, 10 pic pourra 8tro dd salt uniquanont h l'effet d'incldonce (coma. dana 1e typo 1),
In variation do courbure on P n' intervonant que dana In recompression, salt h 1' effat aimultan6 do
i'incidonco ot do in variation do courbure en aval do P. La prosier cas pourrait 8tre avantageur car
ii pormttrait d'nvoir un pic do eurviteaso nutour do I'adnptation, qui no viendrait pas ultdrieuremont
ronforcer 1' intensitd du pie dft h 1' incidence croissanto ; in zone aupersonique n' apparatrait donc pas
prdaaturrnont aux grandes incidences. Par contra 12influence do In variation do courbureoen P sur in
reoapression pourralt Atre ddfnvornbio.

La rdgion du bard d'atteque du type 3 ost airculaire- En tranasanique ella pout pornettroanussi d'obtenfr
des profile do typo "peakl't. Aux bassos viteasas ot on incidence la variation do caurburo, en P rdgirst
toujours lei pie do survitujsse.

Enfin, dana 10 4bno type, la courbure maximnaJo no so trouve pius au bard d'attaque as en P. Dba
l'adaptntion on alnulo ainsi un effat d'incdonco qul. pourrait rdduiro 1incidence do ddcrochage nux
basses vitossos.

*-adaptation -incidence d'attaquo iddale pour i'nilo supposdo rdduito ht son squeoetto.
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ETUDE EXPER11IME AMX GRAEDS VITSE

CONDITIO14S DIESSAI-

Les rdaultats pr6sent6s ant 6t6 obterius dons l~a soufflorie transsonique do 1' Institut de hdcaniquo des
Phuides do LILLE, dont lea principalos caract6ristiquea seint mentionn~es dana la P3.anche 7. Les faibles
nombres do Reynolds atteints, dans cette soufflorie avea des profils de 80 =m de corde, obligent h
d6clencher la transition artificiollment * On utilise pour cola la diffusion tranavorsals de la turbulence
cr66e par des file loagitudinaux r6gulibremant esases or. envergure ; cette mdthode a pour avantage do
no ps trop porturber 1' dcoulement non viaqueur (en particulier elle ne modifie pas lea pie do survitesse)
en autro lea perturbations praduites dana la couche limite permettont de visualiser lea ondes do Machi
dana lea zones ~supersoniqtlos.

Avac des maquettea atiasi potitos (80 mm do cordo) la r~aliaation doit 8tre trbs aoign6e

L'dcart trouvd stir la coto z cat infdriour & ±L 0,02 mms (sauf pou ho profil B promibre maquette fabriqude
o4i ii 6tait do ± 0,04 mm ot pouar le profil C dans la r6giam dui bard d'attaque (x < 0,6 mm) ). L'influence
do catto orrour stir los lois do courburo, notamxzont prbs du bord d'attaque apparalt stir la Planche 8.

P ROFILS ESSAYS MT SOUFLERIE -

Quatre profils ant juaqu' h prdsent Atd 6tudi6s an soufflerie t tin profil do rdfdrence (d6si-Ad on abr6g6
par l~a lottro A) dent la rdpartition do vitesso oat co.atitude d' un plateau (vg/~0 m 1,125) do 2 h 40
du profil, et 3 autres profile dent Isa rdpartitian prdaento tin pic do aurv..toaae aitu6 h la mdme abacisse
Zp = 0,02 c. Los profils B at C no diffbront quo par la loi do recompression immddiatement aprbs 1e pic
le profil D a tin pic beaucoup plua intense. Ces profils ant, dana l~a rdgion du bard dlattaquo, tine loi do
courburo dui type 2. Los planchas 9 & 10 montront leura principalca caractdriatiquas gdomdtriquea et leurs
rdpartitiona de vitoase eni incompressible h incidonco nulle.

LTUDE DU PROMI DE REMMRECE (A) -

Ce prafil oat d'abord compar6 (Planche 11) h tin profil bien connat, lo N&CA 64 A 010, aym~triquo lui-aussi,
d'6paiaseur relative trba voisine (10 % au lieu do 10,17 %) ot dent le mattro couple se situe aussi tin
peu avant 40 % do la cordo. Ct prafil. a 6t6 essay6 dons la aouffherie S4L 'do CHLAIS, dana dos condi-
tions tout h fait analogues do colles do l'I.4.F.L. On constata qu'un gain important a Atd rtdalis6 stir
lo nombre do Mach do divorgonco do trainds.

Ce profil do rdf6renco (A) a des propridtds oxtr~moment intdressantes on incidorco, en particulior h
l'incidenco do 2,50. A No - 0,79 (Plarcho 12) ni lea proasions h la paroi dii profil, i la atrioscopio
no mottont on 6videnco tin choc h la fin do la zone auporsoniquo ; lIa strioscopie pormot do voir la
structure do cotta zone suporaoniquo t andes do ddtonte at andes do compression. Lo calcul do cottt, zone
a 6t6 offectud par la m~thodo des caractdristiquoa h partir do la rdpartition do pression expdrimentale
trouvda sur lo profil (ansa tenir comp~o do lIa coucho Jinite). La ligne sonique a pu sinai 8tro extrapolde.

On a roportd stir lIa photographia dos lignea caractdristiquos sinai calculdos (uno ondo do ddtanto ot sea
rd±'loxions succosaivos sur la ligno sonique ot lea profil) ; la comparaison avec los ondes visualiados
sur lIa striescapio oat tros bonne. Cola prouva notasmant quo 1e caractbro bidimonsionnol do 1' dcoulemont
oat fort pou porturb6 at confirms la valour- at l'intdt des rensoignecents dons par cetto visualisation.
L' augmentatiem localiado do viteso, observi, sur la rdpartitien dos nombres do Mach lacaux h ha fin do la
rocompressien oat due 2t llaccroiasonent do courburo impood au profil dana cotta rdgioa (voir la
Plancho 16).

Sur la Plancho 13 an a roport6 des caractdristiquou calculdos at Ics courbos YP t W , W, 6tant l'angle do
PRAHDL MMR stur la paroi du prefil. Cos courbos montrent quo la recompreasion no a'offoctua pas
rigaurusemont par andes simplos (dana co caa la, ceurbo (P - LJ) sorait tine horizontalo t:( - Lj eo).
Copendant aprbs r/o 0015 la pento do cotta courbo ast trba foiblo 2 lea andes rdfldchioa par la paroi
dui profil sent toujours dos andes do ddtonto dent l.'intensitd ddcrott au cours dos rdfloxions succossives
pour dovonir ndgligcablo. Cot axemplo oat intdressant car il preuvo quo l' on pout obtonir dos prafila
prdsontant tine zone suporsonique tormindo par wio recomipression quaai isontropiquo avac dos prafils qui
no nent pas vraiment do typo "pealqr" dana le sons qui ressort dos travaux dii H.P.L.

La Plancho 14 montro lea champ adrodynamique autotur dui profil dana, los m~mos conditions quo prdcddemmont
(i =2,50 at No a 0,79) 1 ce champ oat ddduit dos proasians rolovdos h la parai do la soufflorio ; lh
encore ducun chac West mis en dvidonco. Ce rolovd pormot do prdciser encore la structure do la doraibro
partia do l~a zone suporsonique.

La comparaiso~n (Plancho i5) dos zones suporsoniqt as ddduitea do ces pressions hi la puroi, at du calcul
dd.h montiannd, basd stir lea pressians rolovdes sur l0 profil, mantra tin dcart assez important surtout
au ddbut do la z.no suparseni-que. Coci oat dd h lIa coucha lmite assez dpaisso qui so ddvolappo sti ha
psrai do la soufflario, at aussi h 1' imprdcision dui calcul dana cotta rdgian.
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EP-DM DUN PIC DE SURVITWSE

La pianche 16 montre une comparaison h l'incidence nile do l'dvolution des vitessea our le profil A do
rdf6rence et stir 1e profil D qui pr~sente un pic do survitosso pr~s du herd d'attaqua. Co pic W'est pas
aasez intense pour donnor lieu vers Ilaval h une zone supersonique 6tendue h Itxrds Enx offet apr~s
x -0,1 C 1oo viteases dvoluent do la mane anibre our A at star D. On remarquo coeodant use ldgbro
diffdreice en oval du matre couple. Suir Ie profil A ii se produit tine -recopression avant le chocl
cool nWest pa al, comme on pourrait 10- penner, h tan choc en ) . caractdrlntique d'une couche limite
larainalre main cos ia strioscopie le confIrme 2t un effet do in. gdomtrle du profil qui comports h
cot endroit tan accroissement do courbure trsaduisant ia r~partition do vitesse choinie on incompressible
I. profil D no prdsente pan cotto anoala h cause d'une ldgbre impr~cision do r6alisation de in maquette
dane cotto rdglon (voir Planche 8).

Star Is planche 17 on remarque quo in trainde eat plus forte our Ie profil D malgrd Is gain de succlon
reprdsentd par-le pie. Pour en zettre en alvidence l'orlgino on a treed h us nombre do Mach nettement
subsonique in rdpartition des presslons sulvant 1ax o z perpendiculaire h in vitesse h l'inflnl. La
courbe ainai obtonue, qui dorne la traindo par intdgratlon, eat ddcomposdc en albux boucles, use boucle
do succion qul reprdsente use poussde et tane boucle do trainde. Pour le profil D cetto dernibro boucle
eat plus importanto quo pour A I on a vdrifld quo dos modifications do in 101 do vltesso quo 1'on
o 'dtait imposd a priori en anoint du plc brs du calcul do ce profil, poirsttaient do rt~duiro cotte
boucie -do traitnde. Main lea lola do courbure correapondantes dana In rdgion du bord d' attaque tendent
alora h passer dui typo 2 au type 3 on mgmo 4 ce qul risque d'Stro moins favorable nun: basses vitesses.

La planche 18 montre in comparnison des nombres do Mach locaux h itoxtrados dos profle A at D h ici-
dance 2,50 et h Me a 0,8, auivant les axes ox et oz (boucle do succion). Pour (D) 1e choc so produit
trbs Uigbroment en acent do la crite (point du profil li in tangente eat parallWi IL in vitesse h
l':inflnl). Pour (A) au contraire 10 choc so forme en oval do la. cr~to ce qui a pour offot do diminuer
In boucle do aucolon. Sur In Planche t9' on a effectuS i'intdgration sdparde des boucles do trabniAo et
do eucclon ; cola met en dvidonce 10 fait blen conn [1) quo 1 ncrolasement initial do la traindo eat
314 h la souls porte do succion (la boucle de trainde rests en effot sonsiboment constants).

La. diminution do la succion a'effectuo h us nombre do Mach plus alleyd pour Io profil D) c0 qi"4 fio traduit
par tan nombre do Mach do divergence do trainde (64i par convention dO x/dM - 0,1) plus gr-xd. On
constate aussi qu' h cette incidence la portance est maximale h us nombro do Mach (Mach do divergence
do portance) plus 61ev6 aussi.

La Plancho 20 porinot do comparer lea profils B et C. Lou=a rdpartltlons do vitosse prdsontont us plc
do mime intensitS mais in 101 do recompression eat dlffdrcnte. Ise profll B pour lequol. Ie gradient
do recompresion oat plus important, donne us gain non ndgligeable sur lo nombre do Mach

Is Planche 21 contre lea strioscopios do l'dcouiement.

CONCN)SI0N

Ii oat difficilo do conclure dlaprbs con quelques exoaples, sur lea anloratlons h espdrer nse us
profil prdaentant, h 1' IncIdence d' ulaptation, us plc do aurvitosse prbs du bord d' attaque par rapport
h tin profl h rdpartition du type "plateau". On a cependant montrd quo ce pic devait, Stro ddflni vo
som pour pouvoir espdrer us gain apprdcinble, sur Ia trainde notamment,

Des 6ldcents noun manquent encore pour faire tine critique assez coaplbte des types do rdpartitlon do
vitasse at dos loin do courbure prbs du bord d'nttnque, qul pormettraient d'obtonir do in fagon la plus
satisTfnlsante possible, les performances recherchdes tant en transaonlquo qu' nun basses vitesses;
c' oat pourquol ces 6tudos vent Atre poursulvios nussi bien nun: vitesses dlevdes qu' nun basses vitossos
nolamment dans des souffleries ht dennitd variable, codi af:Ln d'analysor dgalemont 1' Influence du nombre
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SUMMARY

The geometric features of an aerofoil that are required to produce a supersonic
velocity peak at the leading-edge are examined, and a rule is-presented for relating
the compressible velocity on a round leading-edge to the incompressible velocity. For
a supersonic peak, -thesonic point must lie on a region of sustained high curvature,
and the dependence of the recompression on the way in which the curvature is reduced
is indicated.

An empirical method for determing the complete velocity distribution downstream
of the sonic point is given for an aerofoil in a sonic stream. The velocity distribu-
tion for a given aerofoil is shown to be given by a universal function which is modified
by a parameter based on geometry and one involving the position of the sonic point.
Several comparisons of predicted and measured velocity distributions are presented.



NOTATION

c aerofoil chord

C pressure coefficientp

f thickness parameter f 0.l/[2(z/9)..]

* F( )
-general functionF(¢)

H stagnation pressure in undisturbed stream

K influence factor pertaining to large disturbance flow near leading-edge

M local Mach number

p local static pressure

r local surface radius of curvature

s distance along surface

t aerofoil maximum thickness

U local velocity

x chordwise distance measured from leading-edge

z aerofoil ordinate measured from chord line

C angle of incidence

8 aerofoil surface slope relative to chord line

0 aerofoil surface slope relative to free-stream direction

X influence factor pertaining to supersonic region of flow

p local surface curvature

[ angle between local tangent at surface and tangent at stagnation point

[ Prandtl-lieyer angle

Suffixes

A pertaining to value at sonic point or point corresponding to

r/c - 0.2 whichever is larger

e pertaining to experimental value

i pertaining to incompressible flow value

8 pertaining to value at sonic point

m pertaining to free-stream conditions
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PART I

LEADING-EDGE SUPESONIC VELOCITY PEAKS

P.G. Wilby

1. IhTRODUCTION

As incidence or free-stream Mach number increases, the velocity on the surface of an.
aerofoil increases and eventually reaches sonic value at some point. With further
increases of incidence or Mach-number a region of supersonic flow appears on the aerofoil
and is usually terminated by a shock wave which eventually becomes strong enough to cause
the boundary-layer to separate. Now the strength of the shock wave has been found to
depend upon the way in which the supersonic flow develops, and it can be considerably
reduced if the pressure distribution is of the peaky type. The latter involves a rapid

expansion to a peak velocity at the leading-edger followed by a-compression which is
mainly isentropic but usually finishes with a weak shock. This- type of pressure distribution
is essential if one is. to achieve a large v irgin in incidence or Mach number between the first

appearance of supersonic flow and shoc? induced separation.

However, not all pressure distributions with leading-edge suction peaks are necessarily
desirable ones., On the one hand, the peak may grow very quickly with incidence, resulting
in a high peak followed closely by a strong shock wave, and on the other hand the peak growth
may be too small in which case the peak is followed by a weak compression andthen a further
slow expansion that terminates in a strong shock. The way in which the peak develope with
incidence or Mach number depends to a large extent upon the geometry of the leading-edge and
it is necessary to find out what the controlling influences are before it is possible to
design an aerofoil that will have the most beneficial development of supersonic flow.

2. THE FORMATION OF A LEADIING-EDGE VELOCITY PEAK

As a first step in the study of leading-edge supersonic suction peaks, it is essential
to understand the geometric features of an aerofoil that are responsible for the formation of
such a peak. The region of immediate interest is that in which the velocity of the air is
supersonic and thus the sonic point is a useful reference point. If the sonic point is very
close to the leading-edge then it lies in a region of fairly high surface curvature and the

r flow continues to expand beyond the sonic point as it turns to follow the aerofoil profile.

This expansion of the flow can be considered to take the form of a succession of descrete
expansion waves generated at the surface, which are transmitted to the rest of the flow
field along characteristic lines (Fig. 1). Along each of these lines the value of 0 -W
where w is the Prandtl-Ueyer function, is constant. If the entire flow field were
supersonic then these characteristics or expansion waves would continue to infinity and the
change in Prandtl-Meyer function (which is a measure of the velocity) as the flow followed
the profile would simply be the change in surface slope. However, the flow field under
consideration is a mixed one, being mainly subsonic but containing a small supersonic region.
The two regions are separated by the sonic line at which the expansion waves can be
considered to be reflected as compression waves. These compression waves are of course
members of the second family of characteristics, along each of which 8 + w is constant, and
result in a weakening of the generated expansion at the surface of the aerofoil.. If there
is to be a net expansion then the compression waves must be more widely spaced than the
expansion waves, and furthermore, if the expansion is to be very rapid then the expansion
waves that are produced at the beginning of the supersonic region must be generated in quick
succession. Now the value of the Prandtl-Meyer function v on the generated expansion waves
is directly proportional to the expansion angle or the change in slope. Thus if a is the
distance along the surface

by 0

p (the surface curvature), (1)

and for a rapid initial rate of expansion a high value of curvature is required. The
magnitude of the net expansion will depend upon how long the high curvature is maintained,
and the strength of the reflected system of compression waves. Now if surface curvature
is maintained at a high value for a considerable range of surface slope 'then there must, for
geometric reasons, follow a rapid reduction of curvature to a very low level in order that the
resulting profile should be of the aerofoil type. The simplest form of such a profile is
shown in Fig. 2 and is un aerofoil formed mainly by an arc of a circle of large radius but
having a circle of small radius for a leading-edge, a small circle being the best way of
producing a sustained rapid expansion. Suppose that the sonic point lies on the leading-
edge circle where the surface slope is , ; then at some point on the leading-edge circle,
downstream of the sonic point, the net rate of expansion will be given by the combined effects
of the generated rate of expansion p (- l/r)and the rate of compression from the reflected
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system of waves. If the latter is expressed as p , then the net expansion is

bw
p0 -7)P0

i.e. ) ( (2)
~be

If is constant then equation 2 can be integrated to give

,,(W - (es - 0). (3)

In Fig. 3, values of w measured on a circular leading-edge are plotted against ( ), and
apart from the initial curve, the relationship is seen to be effectively linear, indicating
that is in fact constant ( i 0.5) and that equation 3 is valid. This initial curved
portion of the graph is expected as it can be shown theoretically that bw/66 - 0 at M = 1.
Experimental evidence so far collected indicates that for well established supersonic flow

ihevalue of 7 is effectively independent of free stream Mach number, incidence and
leading-edge radius.

Consider now what happens when the:curvature discontinuity is reached. Here, the rate
at which expansion waves are generated is dramatically reduced from p0 to p, (- /R where R
is the radius of the arc of the large circle). On the other hand it can be.expected that the
rate at which compression waves arrive at the surface does not immediately change as it
depends upon the upctream conditions. Thus the net rate of expansion can probably be given
by

bw -1 P, -77)ba_ -0 " (4)
bs

which is a negative quantity as p(<17p , and the net effect is a strong compression. The
curvature discontinuity is seen to be the point at which a net expansion is replaced by a
net compression and nust therefore be the point at which maximun velocity is reached, that
is the position of the velocity peak. A typical case for this typo of aerofoil is shown in
Fig. 4 where an experimental pressure distribution is superimposed on the curvature distribu-
tion. In the lower part of the figure the pressure is plotted against distance from the
leading-edge and it is seen that the compression that follows the suction peak is so strong
that a shock wave is formed. However, with such a curvature distribution it is possible to
locate the position of the suction peak precisely, and give a close estimate of its magnitude,
It thus forms a useful basis on which to study the effects on the suction peak of such
parameters as leading-edge radius, M4ach number and incidence. Before moving on to these
topics it is necessary to examine the way in which velocity increases from the stagnation
point up to the supersonic region.

3. VELOCITY DISTRIBUTIONS ON ROUND LEADING-EDGES

An experimental investigation of velocity distributions on round leading-edges has
shown that for any free-stream-Mach number in the range O< L14 1 the velocity U can be
related tc the incompressible velocity in the form

U/UW 014) - Ui/u. (bo), (5)

where 8 is the angular displacement from the stagnation point, and

b - . (6)

However, p was found to vary according to the effective profile. That is, it varies froi.,
profile to profile and it also varies as the stagnation point moves on a given aerofoil.
An empirical relation between I and the corresponding incompressible velocity distribution
was found to be

i+
N 1 -= 0.42 (7)

2

where I + v is the initial value of the slope of the curve Uj/Um against sin . When
I - 1 Eqn. 6 reduces to the result suggested in Ref. 1 for circular cylinders and aerofoils
with sustained circular leading-edges. The validity of the above relationships is
demonstrated in Figs. 5 to 7 where measured values of U/Uo, are plotted against b# for a
variety of leading-edge shapes (the appropriate curvature distribution is shown in each
figure), and for each case the experimental points are found to collapse fairly well on to
a single curve which is very close to the theoretical inviscid incompressible solution.
It will be noted that Eqn, 5 indicates that local velocity ratio decreases as free-stream Mach
number increases,abutitis well known that over most of the aerofoil profile, where the surface
slope is small, the reverse is true. Thus Eqn. 5 cannot be expected to hold for large
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values of 4 . However, it does hold for aerofoile at incidence (see Fig. 8) and if
conditions are such that a well established region of supersonic flow exists close to the
leading-edge then it is sufficient to give the velocity up to and including the sonic
point. In all cases the compressible velocity distribution can be related only to the
incompressible velocity diatribution that has the identical stagnation point.

4. THE EFFECTS OF LEADING-EDGE GEOMETRY AND MACH NUMBER ON THE ZERO INCIDENCE VELOCITY
PEAK

With the aid of the above velocity rule it is possible to examine further the geometric
features that are required to generate a supersonic velocity peak at zero incidence. It is
seen in Figs. 5 to 7 that the longer the leading-edge circle is sustained, the steeper the
velocity gradient becomes and the greater the maximum velocity is, hence the greater the
likelihood of sonic velocity being attained at a moderately high value of surface slope.
Fig. 9 shows the experimental pressure distribution at M. - 0.8 for the aerofoil referred to
in FiG. 5, and the supersonic velocity peak will be noted. In contrast, the theoretical
velocity distribution (calculated by the approximate method of Ref. 2 ) at the same Mach
number for an elliptic aerofoil of the same thickness is seen to be everywhere subsonic.
This once more demonstrates the importance of a considerable extent of high surface
curvature.

Returning to the geometrically simple profile defined by two circular arcs (Fig. 2)
joined at a large curvature discontinuity at a fairly low value of surface slope, the
velocity distribution on the leading-edge of such a profile will be close to that for a
circular cylinder. The way in which the leading-edge velocity rule predicts that the
sonic point will vary with Mach number for this case is shown in Fig. 10. A supersonic
peak will begin to form as soon as the sonic point first appears on the leading-edge circle
and will grow as .Iach number increases and the sonic point moves further forward of the
curvature discontinuity. Maximum peak will first be reached when the sonic point reaches
its most forward position at Mo = 0.9. Consider now a family of this type of aerofoil where
each member has the same maximum thickness and the same chordwise position of maximum
thickness. The profile of each member is then determined by the value of the leading-edge
radius and in Fig. 11 it is seen that as leading-edge radius increases, the curvature
discontinuity moves to a lower value of surface slope. Thus for a fixed Mach number and
sonic point position (assuming that the sonic point lies on the leading-edge circle), the
supersonic velocity peak will grow as leading-edge radius is increased. This is a tendency
in the case of more general profiles. It will of course be realised that the sonic point
will not in fact remain stationary as the geometry changes but will move in a way that
accentuates the effect described.

5. THE VELOCITY PEAK ON AN AEROFOIL AT INCIDENCE

A lifting aerofoil is naturally of greater interest but presents a further problem due
to the movement of the stagnation point with incidence and Mach number. As the stagnation
point moves round to the lower surface with increase of incidence, the sonic point moves
further forward and the velocity peak grows. Thus as the design incidence increases then,
in order to prevent the velocity peak becoming too high, the leading-edge geometry must be
changed so that the rapid drop in curvature occurs at a higher value of surface slope.
There is now an added effect of Mach number on peak height as for a fixed incidence the
stagnation point moves forward as Mach number increases, and the movement of the sonic
point is now a combination of its movement relative to the stagnation point and the movement
of the stagnation point itself. Fig. 12 illustrates the situation for a particular aerofoil
at 30 incidence and shows the measured variation of surface slope at the stagnation point and
the calculated variation of 0 (the angular separation of the sonic and stagnation points),
which combine to give the surface slope at the sonic point. The most forward position of
the sonic point is seen to be at M, - 0.7 and this is thus the Mach number for maximum peak
height at this particular incidence. This result, together with the zero incidence result,
indicates that the Mach number for maximum velocity peak varies with incidence.

The idealised situation, of an aerofoil at incidence which generates a supersonic
velocity peak followed by an isentropic compression, is depicted in Fig. 13 and helps to
illustrate the various design problems involved. The accelaration from the stagnation
point, located on the lower surface, is shown with sonic velocity reached on the leading-edge
circle. Then follows the supersonic acceleration which is modulated by the reflected
compression waves. The latter become dominant after the rapid fall of curvature and it is the
delicate balance between the generated expansion and the reflected ccmpression that maintains
the isentropic compression, How to design for this ideal case is not in general known
although Nieuwland has produced some particular solutions.

Although the ideas expressed here are far from providing a complete solution, they dc
assist the appreciation of the various factors involved in the generation of a supersonxc
velocity peak at the leading-edge of an aerofoil.
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PART II

THE DETERMINATION OF THE VELOCITY DISTRIBUTION

ON AN AEROFOIL IN -A SONIC STREAM

N. Thompson

1. INTRODUCTION TO PART II

The need to be able to predict the velocity distribution on aerofoils with regions
of supercritical flow is an important step in the design of the modern generation of high-
subsonic cruise aircraft. The practical significance of this need lies, for example, in
the p-ospect of relating the shock strength to that required to provoke shock-induced
sepazation.

Part I has shown in particular how, for round-nosed aerofoils, a velocity rule may
be used to determine local velocities in the initial rapid flow expansion from the
stagnation point in the Mach number range O, MO<l.O. The rule is only valid upstream
of the small-disturbance flow region but, in most cases of practical interest, can be
used to determine where the sonic point occurs in the initial flow expansion for free-
stream Mach numbers within the transonic speed range. Part II of this paper deals
specifically with conditions at M,- 1.0 and considers, in particular, the problem of
predicting local supersonic regions of flow between the sonic point and the shock wave
terminating the supersonic region of flow. The derivation of a rapid, but accurate,
method is described for obtaining surface pressures in the supersonic region of flow at
Mm- 1.0 which may be applied to any arbitrary round- or sharp-nosed, lifting or non-
lifting aerofoil once the sonic point (or the flow condition at some point downstream of
the sonic point) has been determined from priori considerations.

2. THE REGION OF LOCAL SUPERSONIC FLOW

The purpose of this section is to show how the local supersonic velocity distribu-
tion at MW- 1.0 on any arbitrarily-defined section may be expressed in the form of a
simple correlation with chordwise distance of a parameter,involving only the local
prandtl-Meyer angle, the aerofoil geometry and a factor dependent on the sonic point
location. It follows that for any aerofoil for which the sonic point location and the
geometry are known, a method of predicting the local supersonic region of flow is
embodied in this simple correlation curve.

The method, derived here, is based on a consideration of the characteristics net-
work between the aerofoil surface and the sonic line and certain transonic similarity
laws. The characteristics network, as noted in Part I, can be considered to consist of
a family of expansive simple waves (of the 8 -w type), generated by a change in slope at
the surface, onto which is superimposed a family of compressive waves (of the e + wtype)
that account for the non-uniformity of the flow approaching the sonic line. Thus, the
total compressive effect that returns to ;he surface up to any particular ohordwise
point is given by (8T - e) -.. The chordwise variation of 0 +w therefore gives a
measure of this tota! compressive effect that reaches the surface from the sonic line
and, in particular, the value of b(O +w )/b(x/c) is the strength of the compressive
disturbance at any particular point.



14-5

A consideration of the transonic similarity laws (Ref. 1) shows that for families
of symmetridal aerofoil sections given by

z/c - + (t/c) F (x/c) (1)

the transonic flow fields about the aerofoils at zero incidence are similar if the
parameter

1 1 - Y(= constant. (2)

[M2 (-y + 1)(t/0)] 2/ 3

This implies that for MI<1.0 the flow fields about a family of symmetrical aerofoils,
varying only in t/c, will not be similar at the same value of Mm. However, at MO = 1.0
the flow fields will be similar since the parameterc - constant - 0.

Consider now the similar flow fields, for Mm - 1.0, about two related aerofoils
as illustrated in Fig. 14. In the flow field at,and away from, the surface it may be
deduced from Ref. 1, within the framework of small-disturbance assumptions, that related
points in the two similar flows, at corresponding values of x/c, will obey the relation-
ships

C /(tlc)2/3 C C/(t~o)213 (3)
p 1pZ (tic) 1  -z"(t'c) 1/  (4)

and 0/(t/c) - e/(tyc) (5)

(where Z and Z denote ordinates of related points in the flow fields measured from the
aerofoil surface and e and 8 are the corresponding local flow directions referred to the
free-stream direction). Thus, at the surface, points at a given value of x/c in the two
similar flow fields are related points. Furthermore, since at the sonic line

C /(t/0) 2/3  _ Cp2(t'/) 1 3 - 0
p p

points P and P'(which correspond to the same value of x/c) on the sonic line in the two
similar flow fields are also related points. It therefore follows that, as in Fig.14,
the two pairs of characteristic lines (6,-u,), (8,+.) and(e'-w,),(e'+w), which meet
the sonic line at the related points P and Pp will also orifinate from, and return to,
the surface at the same (related) chordwise points, A and A, B and B'. (The values of
6, ,w, , e,1, etc. here relate to local values away from the surface.)

Along a given characteristic of either the (8,-w,) or (e,+w2) family

e, -w, - e2+w w eL (at the sonic line). (6)
, I I I I

Similarly e, -w, - e,'+w, - eL (7)

Thus, in particular, from equations 5, 6 and 7

(et+w 2)/(t/c) - (4 / c(

Therefore, for families of symmetrical aerofoils at zero incidence, the value of (e+w)
at any specific chordwise point on the surface is proportional to t/c. (This relation-
ship is, of course, also applicable to relatqd points away from the surface.) Defining
a transonic similarity parameter f - 0.l/(t/c) (the factor 0.1 being included so that
values of f are close to uniby) a general relationship for affinely related symmetrical
aerofoils at zero incidence therefore exists, of the form

(,+O)f - F(x/c) (9)

and is applicable to points at the surface.

For affinely related cambered aerofoils at zero incidence a similar relationship
may be established by defining f in an appropriate manner, because disturbances on the
lower surface do not significantly affect the upper surface supersonic region of flow
(and vice-versa). The similarity parameter, f, for cambered aerofoils at zero incidence,
is, therefore, based on the maximum upper (or lower) surface ordinate instead of the
overall value of t/c,

i.e. f 0 0.1 (10)

2(z/c)ma
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The relationship may also be-extended to aerofoils at incidence by including an
allowance for the effective change in surface slope relative to the free-stream direction
attributable to the incidence setting. Effectively, at the surface, the slope, relative
to the free-stream direction, changes from 6 -to 0 - e-a. A general relationship of the
form

(w+e)f " F(x/c) (ni)

may therefore be established for a family of aerofoils, which is exact for affinely
related symmetrical aerofoils at zero incidence (within the framework of small disturb-
ance assumptions) and is approximately true for other cases.

For a family of aerofoils the function F (x/c) is, therefore, unique. However,
this is not so for aerofoils which are unrelated, as demonstrated in Fig. 161 where
values of (w+8)f, obtained from an analysis of experimental data- for a wide range of
round-nosed section shapes tested in a sonic stream, are presented as a function of
(x/c)'/' . (The abscissa scale of (x/c)'/3  is chosen simply to expand the scale of x/c
near the leading edge where the variation of (w+9) with x/c is very rapid.) The analysis
demonstrates that the compressive effect (given by the ohordwise variation of (W+e)
varies monotonically with x/c from the sonic point, as illustrated also in the sketches
of Fig. 27. This is true even during a very rapid flow expansion from the sonic point
and durin4 the flow recompression, brought about by particular local chordwise variations
in e or r/c, that often follows such a rapid flow expansion, as discussed in Part I. In
addition the ohordwise variations of (w+9)f, although not identical in each case, are
very similar for a wide range of section shapes.

The similarity between the chordwise variations of (w+e)f with x/c in Fig. 16 for
aerofoils which are not related suggests that the approximate collapse of data points
about the mean curve of Fig. 16 can be made even more complete by formulating a general
affine relationship. The simplest form that such a relationship could take is

(w+9)f% - F(x/c) (12)

where X is a simple numerical constant for any one aerofoil at a particular incidence.
The adequacy of this simple form can be evaluated from experimental data by calculating
X at one particular chordwise station from the relationship

- (W +B)f/(W+O)f (13)

(where the whole denominator is given by the mean curve of Fig. 16) and then examining
the completeness of the collapse of experimental data for other chordwise stations when
presented in the form of Equation 12. This has been done by defining X at the sonic
point and the resulting data collapse is shown in Fig. 17.

Assuming that F(x/c) is a unique function for any aerofoil shape (and this is
confirmed, to a close approximation, by the collapse of data in Fig. 17), it is
interesting to note that, at the sonic point

(W+)fk . f b(x/) (14)

6(x/c) b(x/c)

(since, whenw - Obw/b(x/c)- 0 ) and that

X F(xc (15)
f des

d(x/c)

Thus the factor X (and hence also the local rate of compression at any chordwise point)
is, therefore, dependent on the sonic point location and in particular on the rate of
change of surface slope at this point, i.e., to a close approximation, the curvature at
the sonic point. The factor X may, therefore, be considered to represent the influence
of conditions at the sonic point (and, in turn, the influence of the subsonic region of
flow) on the downstream supersonic region of flow. Since values of (w+B)f decrease to
a value of about unity at the trailing edge the significance of X in determining the
downstream rate of compression becomes less as x/c-6.l.0.

Evaluation of X thus requires a knowledge of the sonic point and this is obtained
from a prediction of the subsonic flow. The correlation presented in Pig. 17 is based
on experimental data obtained at the National Physical Laboratory. In Section 3 it is
shown how mathematical solutions for certain section shapes are also embraced by the
empirical correlation of Fig. 17 and hence add to the generality of the method. However,
before proceeding to these considerations, it is necessary to consider the behaviour of
thin, round-nosed aerofoils which have shown certain exceptions to the general affine
relationships established up to now.

' although the scatter about the mean curve is not particularly great.
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2.1 The variation of the parameter f for thin aerofoils

In certain cases the analysis of experimental data indi ates that the strength of
the compressive effect at the surface (represented by b(1440)/a(x/c)) is not as large as
might be expected from the correlation presented in Fig. 17. These particular cases
occur on the upper surface of thin aerofoils at positive incidence for which the initial
expansion is rapid. An explanation for this phenomenon is suggested below from a
consideration of the characterietics pattern on a thin aerofoil.

The relationship given b7 equation 3 indicates that for affinely-related aerofoile
at zero incidence the thinner the aerofoil the smaller are local surface velocities.
However, this trend of thickness effect breaks down if, as for thin round-nosed airofoils
at incidence, the sonic point moves onto the more highly curved region near the leading
edge, as illustrated in Fig. 15. In this case the high curvature region just downstream
of the sonic point produces strong expansions giving high local Mach numbers. The
chordwise variation of the compressive disturbance that can be considered to originate
at the sonic line is then reduced for two reasons. Firstly, expansion waves of the 0- W
family, originating at the surface near the sonic point, meet the sonic line higher
above the surface than on an affinely-related thicker aerofoil at an equivalent incidence,
as illustrated in F.g. 15. The reflected compressive waves from the sonic line(of the
0+wfamily)therefore return to the surface proportionately further along the chord than
in the case of the thicker aerofoil. Secondly, the high local Mach number region,
produced by the high surface curvature, causes the incoming family of compressive waves
to be deflected even further along the surface than would occur if the initial expansions
were weaker. Both these effects therefore cause the strength of the chordwise distribu-
tion of the compressive disturbance to be weakened, particularly in a region near to the
sonic point. Thus, as incidence increases, and the initial expansion grows stronger,
the chordwise distribution of the compressive effect that actually ccurs on a thin
aerofoil is less than that indicated by the correlation of Figure 17 which is not based,
primarily, on data for thin aerofoils.

This effect can be represented by a variation of the factor f with chordwise
distance. A study of experimental data indicates that when f>1.3 (i.e.(z/ct 4 0.0385)
and a >0 then the variation of f (A fL) with x/o, downstream of the high curvffure
region (the limit of which may be taken as the point corresponding to r/o - 0.2), is
given by the relationship

fL - f - k Q (16)
57.ma

where the variation of k with x/c is given by Fig. 18. The variation of fL and (w+ED)f%
with x/c, given by equation 16 and Figure l7, is such that the increased expansive effect
will be greatest in a region downstream of, but near to, the sonic point and almost
negligible in a region near the trailing edge.

3. THEORETICAL SOLUTIONS FOR SOME SPECIAL AEROFOIL SHAPES

The purpose here is to examine some theoretical solutions that are available at
M. - 1.0 for some special shapes and, in particular, to see how these solutions compare
with the results obtained using the empirical relationships obtained in Section 2 for
the region downstream of the sonic point.

3.1 Results for a family of sharp-nosed aerofoils

Spreiter and Alksne in Ref. 2, and Rubbert and Landahl in Ref. 3, present
theoretical results for a family of sharp-nosed aerofoils at zero incidence defined by
the equations

z A~ n

and z A[(I- - (1 )] (18)

Equations (17) and(18) give a family of aerofoils having the position of maximum thickness
aft of the mid-chord point and forward of the mid-chord point respectively. The
maximum thickness position is determined by n while t/c is determined by A.

i.e., the actual value of (aie4)fX at any chordwise point is larger than the
corresponding value given by Figure17.
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In Refs. 2 and 3, theoretical results are presented for the five aerofoils with the
position of maximum thickness at, or near, x/c - 0.3, 0.4, 0.5, 0.6 and 0.7 and these results
are compared with experimental data from Ref. 5. These experimental data were obtained from
wind tunnel wall bump tests and using a ventilated working section that may not have been
adjusted precisely for interference-free conditions. As a result the experimental data are
influenced by the initial wall boundary layer and tunnel-interference effects. However,
Spreiter and-Alkane's theoretical result for the parabolic-arc section (maximum thickness at
x/c - 0.5 ) is considered to be almost exact over most of the chord (as demonstrated in
Ref. 6). The differencesbetween the theory and the experimental data of Ref. 5 for this
aerofoil can therefore be considered to be that due to the effects noted above, except near
the trailing edge where viscous effects, associated with shock-wave/boundary-layer interac-
ti)n, are predominant. If an assumption is then made that these same differences are
applicable to the experimental data for the other models, at the same values of t/c and at
corresponding chordwise stations, then the modified pressure distributi s should be more
nearly correct than the original data.

In Figs. 19-23, the theoretical results of Refs. 2 and 3 for the five aerofoils, and the
experimental data of Ref. 8 corrected in the way outlined above, are compared with predicted
pressure distributions downstream of the sonic point estimated using the correlations derived
in Section 2. Since the velocity rule derived in Part I breaks down when the surface slope
is small and the flow is governed by the laws of small-disturbance theory, an alternative
method is required to determine the subsonic region of flow up to, and including, the sonic
point for these five aerofoils. The alternative method used here is given in Ref. 4 and may
be used to predict the occurrence and nature of the small-disturbance subsonic region of flow
on both sharp and round-nosed aerofoils in a sonic stream. A value of t/c - 0.08 was chosen
for all the comparisons since this is the only common value for which experimental data from
Ref. 5 were available for all five aerofoil shapes.

The comparisons in Figs. 19 and 20 show that when the point of maximum thickness Is
forward of the mid-chord point then Rubbert and Landahl's method and the present method are
in substantial agreement over the rear 50A of the chord. The method of Spreiter and Alksne,
predicts pressures which are considerably lower in this region. For the aerofoil with maxi-
mum thickness at x/c a 0.3, Figure 19 shows that Rubbert and Landahl's method, the present
method and the experimental data indicate a region of decelerating flow over the rear part of
the chord. The method of Spreiter and Alksne, on the other hand, cannot predict this since
the method fails when dU/dx(O. For the aerofoil shapes with maximum thickness at or beyond
the mid-chord point Figs. 21-23 show that all three prediction methods are in substantial
agreement, in the supersonic region of flow at least.

3.2 Results for a particular round-nosed aerofoil
The theoretical methods for evaluating the complete flow about oharp-nosed aerofoils in

a sonic stream, such as Refs. 4 and 6, are based on a solution of the approximate small-
disturbance form of the transonic flow equation and are therefore not strictly applicable to
round-nosed aerofoils. However, Graham, in Ref. 7, outlines a method for designing a round-
nosed aerofoil having a simple-wave compression over moot of the forward half of the chord
at Mw - 1.0. Starting with a circular leading edge, which is maintained until the surface
slope falls to a value of 12.50, Graham uses Chuskin's theoretical solution for a circular
cylinder at M, - 1.0 (Ref. 8) to determine the initial rapid flow expansion on the circular
region. He then uses the method of characteristics in an inverse manner to derive an after-
body-shape that, theoretically, gives a simple wave compression up to the point where the
surface slope is about 0.60. From this point to the trailing edge Graham uses part of a
circular-arc in order to obtain a closed symmetrical aerofoil shape and assumes that the
flow is given by simple wave expansion theory in this region.

Graham's theoretical results for this aerofoil, designated NPL 9431, are plotted in
Fig. 24 for a - 0 together with experimental data obtained at N.P.L. The predicted pressure
distribution obtained using the method outlined in Section 2 downstream of the sonic point
(the sonic point occuring in the rapid flow expansion from the stagnation point given by
Chuskin's solution for thG circular cylinder) is given in the same figure. Clearly, there
are fairly considerable differences between Graham's theoretical and experimental results
between O.lc and 0.5c. The prediction obtained using the present method follows the
experimental results more closely over this part of the ihord. Graham only calculates
theoretical results for the NPL 9431 aerofoil at zero incidence. However, in Fig. 25 a
prediction of the upper-surface pressure distribution at a - 20, obtained using the present
method, is compared with experimental data for Mc - 1.0. Apart from a certain amount of
"waviness" in the experimental pressure distribution, and some discrepancies in the region
near x/c - 0.4, the comparison between present prediction and experiment remains satisfactory.

4. THE LEADING-EDGE FLOW RECOMPRESSION

An examination of the continuity between the subsonic flow on a round leading-edge and
the supersonic flow further downstream has also revealed some interesting flow phenomena
which are now worth considering.

The rapid flow expansion from the stagnation point exhibited by many sections is
invariably followed by a flow recompression (as illustrated, for example, in Figs. 26a to
26d) as the local surface radiuc of curvature increases rapidly from the leading-edge value.
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The means whereby this recompression may occur downstream of the initial peak velocity may

be of one, or a combination, of several forms. If, for example, in the~ initial rapid flow

expansion, supersonic velocity is attained before the peak value of velocity occurs then
some isentropic recompression may occur (Figs. 26a, 26b) and may (Figs. 26b, 26c), or may

not (Fig. 26a), be terminated by a local shock compression, downstream of which the flow

will be subsonic if a strong shock wave occurs. In addition a local compression in the

subsonic flow upstream of the sonic point may occur as illustrated, for example, in Fig.26d.
The various forms the -recompression may take, and the conditions under which each f6rmis

to be expected, are discussed in the following Sections. Examples of some of the forms of

leading-edge flow compressions referred to are presented in Section 5 and are there compared
with predicted iesults obtained using the methods outlined below.

4.1 Recompression occurring in the supersonic region of flow

The flow mechanism generating isentropic recompression in the supirsonic region of flow
and, in some cases, causing the formation of weak (oblique) shock waves is discussed in
Part I and Refs. 9 and 10 from a consideration of the characteristics network in the leading-
edge region.

The presence of isentropic recompression in the supersonic region of flow and/or a weak
(oblique) shock wave (downstream of which the flow is supersonic) will be given, automatic-
ally, by the prediction method implicit in Section 2. Since a chordwise variation of 6-w-
constant represents a simple-wave compression, a chordwise vaiition of e -w'which increases
with increasing x/c indicates a compression greater than a simple wave, i.e.p a shock wave.
Applying this criterion, therefore, will indicate whether an oblique shock occurs in the flow
as illustrated in Fig. 27b. That the applicability of the method given by Section 2 is still
valid when a weak oblique shock occurs in the flow presumably arises from the fact that the
shock, in this particular case, is merely a weak convergence of compression waves. The usual
losses associated with the flow through a shock wave are therefore a minimum and the flow
compression is nearly isentropic.

4.2 Other forms of leading-edge flow compressions determined
by the requirements for flow continuity

A strong shock wave may occur in the leading-edge flow if the surface radius of curva-

ture increases sufficiently rapidly, downstream of the leading-edge on which supersonic flow
has initially developed, such that the surface geometry is not compatible with the presence

of supersonic flow. The over-expanded leading-edge .low then breaks down and Is recompressed
to a subsonic level, compatible with the downstream section shape, through a normal, or near
normal, shock wave. Downstream of the shock the flow expands, reaching sonic velocity again
at some point further along the surface. The expansion to sonic velocity downstream of the

shock obeys the laws of small-disturbance theory and the occurrence and magnitude of local
subsonic velocities in this region may be obtained from the method noted earlier, in Ref. 4.
The existence and location of such a shock may be determined to a close approximation, as
illustrat -d in Fig. 26b, by the assumption that the shock upstream velocity (within the
supersonic region of flow), predicted by Section 2, and the shock downstream velocity (in

the downstream region of subsonic flow) are compatible with the normal shock relationship.
An example of this form of leading-edge compression is given in Fig. 29.

Thus an over-expanded leading-edge flow, in which local velocities have reached a
supersonic level, may establish continuity with the presence of a downstream region of sub..
sonic flow, dictated by the section geometry, by the occurrence of a normal shock wave.
However, in some cases the shock compression that would be required to compress the flow from
a supersonic level (achieved in the absence of any downstream influence arising from a
requirement for flow continuity with a downstream region of local subsonic flow) to the sub-

sonic level (dictated by the downstream section shape) may be gre..ter than that which can be

achieved through the occurrence of a normal shock. In this case experiment suZ.;0ts that the
downstream surface shape exerts an influence on the upstream flow reducing the rate of flow
expansion from the stagnation point sufficiently either for the remaining compression to sub-
sonic velocity to be achievable through a normal shock or that sonic velocity is not achieved
in the initial expansion. In the latter case the recompression of the flow to velocities
compatible with the downstream surface shape takes place at an entirely subsonic level.

An analysis of experimental data, particularly for such cases referred to above, has

suggested that when a region of small disturbance subsonic flow exists, its influence on the
upstream flow, arising from the requirement for flow continuity, may be represented by an
influence factor K. The factor K is a variable and is so defined that the value of KU/U0, in
the upstream large disturbance flow, may be considered to be the local velocity that would

eccur in the absence of this downstream influence. Thus the large-disturbance velocity

distributioo, as predicted, for example, by the methods outlined in Part I and Section 2 of

Part II, should, more correctly, be interpreted as KU/Uo even if a leading-edge recompression
does not occur. It is then necessary to establish whether any leading-edge flow readjustment
is required (i.e., K X 1.0) in order to maintain flow continuity and exclude any incom-
patibility between the upstream large-disturbance flow and any downstream small-disturbance

£formed when "reflected" compressive waves from the surface coalesce as illustrated
in Figure 27b.
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subsonic flow that might exist. A method for determining local values- of K, for the case
of an aerofoil in a sonic stream, is given in Ref. 4. The method suggests that near the
stagnation point K is approximately unity but that at, and near, the transition from the
large- to the small-disturbance regions of flow K may be significantly greater than unity.

The case when the initial flow expansion rate is reduced so that a normal shock occurs
is illustrated in Fig. 26c. Here the locus of possible values of shock-upstream velocity
(obtained by applying the normal shock velocity relationship to the downstream small-disturb-
ance subsonic flow) is always lower than the predicted upstream variation of KU/U, . The
case occurring when a larger downstream influence causes the leading-edge flow compression
to take place at an entirely subsonic level is illustrated in Fig. 26d and an example is
given in Fig.31. This case will occur whenever the locus of possible values of shock-
upstream velocity is always greater than the predicted upstream variation of KU/U.

Instances when K is significantly greater than unity are only likely to occur for
aerofoils with a radius of curvature (r/c) distribution such that a sustained region of small
r/c is followed by a very rapid increase immediately downstream. This type of aerofoil
geometry, associated with a low or negative incidence, and particularly at free-stream Mach
numbers approaching unity, often leads to the form of velocity distribution featuring a
compression in the subsonic region of flow close to the leading edge.

5. FURTHER COMPARISONS OF PREDICTED AND EXPERIMENTAL PRESSURE
DISTRIBUTIONS AT M, - 1.0

The comparisons of predicted and experimental pressure distributions for M - 1.0 made
so far have been for some sp:cial aerofil shapes. In this section some further comparisons
are made for two arbitrarily-defined aerofoil shapes, the latter example being chosen to
illustrate the applicability of the present methods in predicting several forms of the
particular types of pressure distributions discussed in Section 4.

5.1 NPL 3161 aerofoil, a - 5.20

The NPL 3161 aerofoil is a thick (t/c - 0.14), cambered aerofoil with a variation in
local ourface radius of curvature which increases monotonically with increasing x/c. The
variation of local curvature near the leading edge does not produce a pressure peak in this
region, but the surface near the trailing edge on the lower surface is concave which, at
Wo- 1.O, produces a substantial region of decelerating flow over the rear part of the chord.
The comparison of predicted and experimental pressure distributions is shown in Fig. 28.

5.2 NPL 9422 aerofoil, a - 0, 40
The NPL 9422 aerofoil has a circular leading-edge region maintained until the surface

slope falls to a value of 100 . This feature produces the rapid flow eyxansion from the
stagnation point and subsequent flow compression, refarred to earlier. The rapid increase
in the local radius of curvature downstream of the circular region is such that, at a - O,
the conditions for flow continuity, referred to in Section 4.2 and illustrated in Fig. 26b,
between the upstream large-disturbance supersonic flow and the downstream small-disturbance
subsonic flow, indicates that a normal shock wave occurs in the leading-edge flow compression
at about 0.036c. A comparison between predicted and experimental data is shown in Fig. 29.

At a - 4 the upper-surface pressure distribution takes the form indicated in Fig. 30.
Between about O.Olc and O.03c both the predicted and experimental variations of (O-w)
indicate that a compression occurs through an oblique shock.

0
On the lower surface of this aerofoil at a - 4 the condition for flow continuity,

given in Section 4.2 and illustrated in Fig. 26d, indicates that a subsonic compression
occurs in the leading-edge region. The predicted variation of local pressure in the leading-
edge region, calculated using the methods referred to in Section 4.2, is presented in FiG. 31
as a function of surface slope. Fig. 30 presents the complete predicted and experimental
chordwise variations of local pressure over the whole chord.

* 6. CONCLUDING REMARKS

The method presented in Part II of this paper, for predicting the supersonic region of
flow on any arbitrary aerofoil shape, has proved to be both simple in application and
reliable for a wide range of round and sharp-nosed, lifting and non-lifting section shapes.
Because the method is founded on experimental data viscous effects, other than boundary-
layer/shock-wave interaction near the trailing edge, are included. Also, since the results
of applying this method agree well with other inviscid theortes where comparison is possible,
it follows that the method may be applied over a wide range of Reynolds number.
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AN APPROACH TO THE DESIGN OF THE THICKNESS DISTRIBUTION
NEAR THE CENTRE OF AN ISOLATED SWEPP WING AT SUBSONIC SPEED

by
M. M. FREESTONE,

Department of Aeronautics,
The City University, London

1. introduction

Much effort has been directed towards the design of aerofoil sections suitable for use
with swept wing aircraft cruising at high subsonic Mach number. However, the aircraft appli-
cation of the two-dimensiona] results is straightforward only when simple sweep theory is
adequate. In regions near the fuselage side and towards the wing tips the three-dimensional
nature of the flw is pronounced and simple sweep theory is greatly in error.

Not surprisingly, the three-dimensional theory of compressible flow is at a much less
developed stage than the corresponding theory of wing sections, indeed only recently has it
been practicable to calculate with reasonable accuracy the pressure distribution according
to the first order theory- (linearized theory). Some improvement on the linearized theory
reaults can be obtained if fsators are applied to it to account for edge non-uniformities
(the Riegels factor for example), and for local variations in Mach number. Such factors are
not completely adequate, of course, nor is there any one set of factors obviously better than
others which can be suggested. For these reasons, and for simplicity, all such factors are
omitted in this paper.

2. General Problem

The general problem selected is that of the thickness design of the centre region of an
isolated swept wing. The relevance of this problem to practical wing design can be argued
quite simply; the problem, or rather its solution, is a step towards the ultimate objective
of improving the overall design. To be made practical the effects of a fuselage and of adding
a load distribution must be included. Concentration on the centre region also deserves some
explanation. There are two reasons for this. The first is that the use of curved tip wings
provided a partial solution to the tip shock problem; consequently further design of the tips
is not so urgent. The second is that the centre region is thought to generate the flow
features which lead, at low lift coefficients, to the formation of what has been called the
'rear shock' (Ref. 1), thus indicating that attention should be directed at the centre. It
is reasonable to assume that any changes to wing tip geometry would have only a very small
effect on the required centre.

3. Design Criteria

Ideally one would like to design to a very general criterion such as minimum drag under
given conditions, This is not possible with aerodynamic theory in its present state, one
reason being the inadequacy of drag prediction methods. The approach generally adopted has
been outlined by Bagley (Ref. 2). Thus one might choose the sheared wingKM pressure distri-
bution on some basis and then determine the wing sweep which is Just sufficient to make the
critical Mach number equal to (say) the cruise Mach number. The design of the sheared wing
section is then possible (within practical limits) by uce of two-dimensional theory. This
section is suitable for the mid semi-span provided the leading edge and trailing edge sweep
angles are nearly equal. If the taper effect is too I. .ge then a modified api.oach using an
effective sweep angle which varies over the chord is possible.

m The first order theory calculations presented in this paper have been rAde
using the numerical method of Ref. 6.

NX Sheared wing is used in this paper to denote a portion of the wing (probably
existing only in the imagination) which is free of the effects of taper and
of the proximity of the centre and tips of the winr.
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The design task for the complete wing may then be stated by specifying that the complete
wing (and in particular the centre region) should have a critical Mach number which is lower
than the heared wing critical Mach number by the minimum amount.

Limitations imposed by theory make this problem currently insoluble. The flow pattern
on a finite wing cannot be predicted up to the onset of shock wave formation. Even if such a
calculation could be made the problem of design for high critical Mach number would remain.
The present approach adopts a simplified view of the two-fold problem. The first simplifica-
tion has already been remarked upon, and is in the flow calculation method, the subsonic
linearized theory being used in the design process. The second simplification involves the
notional pressure distribution used as a basis for design in conjunction with this theory.
This latter simplification takes the form of adopting certain proposed rules which, if obeyed
by the notional pressure distribution should lead to shock free (or very weak shock) flows.

The simplest of these rules states that if the sheared-wing pressure distribution be
maintained (in the notional pressure distribution) over the whole span then the complete wing
should be as shock free as the sheared wing, for the isobars would then maintain their full
sheared wing sweep throughout.

Difficulty in applying this rule lies in. the observation that except perhaps for
singular wing geometries (presumablZ of no practical interest) isobar sweep cannot possibly
be maintained right into the centre . This being so, one is left to speculate whether merely
reducing the lateral extent over which loss of sweep occurs represents an improvement or not.
Only experiment at present would resolve this, although intuitively one would expect an
improvement to be the result.

The second rule, which has been suggested as an alternative, is that the notional
pressure distribution need have full isobar sweep only in those parts of the wing where the
flow is compressing in the streamwise direction. The basis for this rule derives from an
interpretation of experiments in which the rear shock is believed to be formed as a result of
coalescing compression waves generated inboard. Such waves should not coalesce (it is thought)
if their inboard distribution is similar to that on the sheared wing.

It may be deduced that to satisfy this latter rule full sweep of the minimum pressure
isobar is needed into "he centre unless the peak (negative) pressure coefficient is reduced
at the centre below its sheared wing value. A quantitative expression of this rule is that
the Mach number component resolved in the direction normal to the local isobar direction
should not exceed unity in those regions in which the flow is compressing in the streamwise
direction. A variation of this rule is to relax the condition to apply only where the pres-
sure rise is rapid. No attempt to use this variant is made here.

The conjectural nature of these rules is apparent. Their use is only justified in the
absence of a more rigorous approach.

4. Selection and Solution of Particular Problems

4.1 First Problem

The problem first studied is the one suggested by the first of the rules given above,
that of designing the centre region to produce the same chordwise pressure distribution
as that generated by the sheared wing. The particular problem is defined once the wing
planform, the sheared wing pressure distribution and the design Mach number are specified.
Here it may be noted that because linearized theory is being used, a consistent change in
wing thickness, i.e. a constant factor on the z-ordinates, will produce a proportional
change in the perturbation velocities and also in Cp values, for the pressure coefficient
is related t the streamwise velocity perturbation u by

cp - -2u/U.
(U0 is the free stream velocity.) Moreover, also as a result of using the simple theory,
if a solution is obtained for a given wing at a certain subsonic Mach number, the same
solution cay be applied at any other subsonic Mach number to a different, but related,
wing geometry. The relations are expressed by the subsonic similarity rule, or through
the use of the analogous wing. However, the results presented in this paper will not
appear to take note of these generalizations and specific thickness ratios, planforms and
Mach numbers will be quoted. The advantage of this is that the practical significance of
the results is more readily seen.

ov
R On the centre line y - 0, v - 0 and T - 0. Hence, because the flew is

potential, au/ay - 0. Thus, isobars (identical in linearized theory with
lines of constant u-velocity perturbation) must cross the centre line at
right angles.
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The choice of the chordwise pressure distribution for this exercise is of some
significance. The following considerations guided the selection.

It may first be said that a distribution -such as that produced by a sheared wing of
parabolic arc section or elliptic section, although having the advantage of theoretical
simplicity, would most likely be so far removed from any distribution of practical
interest as to make any deduction from its study of doubtful utility.

At the other extreme any attempt to use a "peaky" pressure distribution is also
likely to give spurious results. The reason in this case ie that the operation of
interest with these aerofoils is when there is supersonic flow over the forward part of
the chord, and the subsonic theory is inadequate for such flows.

Virtually by a process of elimination therefore the choice devolves on the rooftop
pressure distribution. Even here caution ray be needed in seing to general conclusions
from particular results for one rooftop distribution.

The basic wing chosen has been designated elsewhere as RAE Wing A. It is doubly
symmetric and has the RAE 101 (9 percent thickness ratio) section throughout. It is a
swept tapered wing with straight leading and trailirg edges. Its aspect ratio is 6,
taper ratio 1/3, and it has a mid chord sweep of 30 deg. (A sketch of the wing, together
with nomenclature, is given in fig. 1.)

To appreciate the task posed by the design problem the first results give the
pressure distributions of this basic wing at (free stream Mach number) M,- 0, Xs- 0.8
and MC. 0.9, (figs. 2 and 3). It is seen that the mid semi-span pressure is virtually
the same as that on the sheared wdng while the distributions at and near the centre
exhibit the familiar 'centre effect'.

The problem of design formally requires a two variable singular integral equation to
be solved, as does the linearized theory problem of determining the load distribution on a
lifting surface. The similarity of these problems might suggest that techniques for
solving the latter would be suited to the former. Thus a modification of Multhopp's
method (Ref. 3) or its variants could be employed. The loading functions would be re-
placed by thickness distributions and the downwash velocity would be replaced by the
streamwise velocity perturbation. The calculation details would naturally be quite
different in the two cases.

This rather general approach to the problem is now probably feasible and might be
justified. However, in view of the conjectural nature of the design criterion and the
knowledge that the criterion cannot be quite satisfied, a simpler but less precise method
was adopted. In this the centre section of the wing was modified according to a method
due to Weber (Ref. 4). Sections outboard of the centre were defined by using straight
generators from the centre to a control section positioned at a suitably chosen spanwise
station. Sections outboard of this control were constant and the same as the required
sheared wing section.

As expected, it was found that this simple approach would not provide quite the
solution required. The centre designed by the method of Ref. 4 is strictly the section
shape needed on a uniform swept wing to give the required pressure distribution at its
centre. On such a wing the pressure distributions away from the centre depart markedly
from the required variation. Fig. 4 shows the sheared wing pressure on a 'centre-
designed' uniform wing, and compares it with the desired rooftop distribuion. Clearly
the centre shape has to be faired rapidly into the sheared wing section to achieve a
nearly uniform spanwise distribution of pressure. Such a rapid fairing in turn leads to a
reduction in the magnitude of the changes which would otherwise result at the centre.

In some respects the pressure distribution produced on a wing designed on the simple
basis is acceptably near what is required, despite the above observations. Fig. 5 shows
results for the design Mach number zero. One possibly important shortcoming, however, is
the overshoot in negative pressure coefficient near the leading edge just outboard of the
centre. Should it be necessary to remove this feature the simplest approach would be to
reduce the very high leading edge radius employed in the centre section.

The choice of zero for the design Mach number in the case illustrated requires some
comment. There is indeed no reason why a high subsonic Mach number should not be used
except that to counteract the increase in centre effect with increase in 14ach number the
centre section shapes required become ever more awkward as sections to use on actual air-
craft.

This fact is illustrated in fig. 6 where the centre shapes for various design Mach
numbers are shown. In order to demonstrate the effect fairly the sweep angle and sheared
wing section are kept constant while the design Mich number is varied, Thus, the centre
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is designed so as to give the same pressure distribution at the centre as is produced
on a sheared wing with a 9 percent thickness ratio RAE 101 section in a flow of the
same undisturbed Mach number. There are two difficulties in the sections which result.
One is the marked forward trend of maximum thickness position together with a decrease
in overall thickness which would make the wing torsion box structure heavier than it
would otherwise need to be. The other difficulty is the ,section crossing, near the
trailing edge. The theory is impractical when it produces this result and the feature
must be suppressed in any practical application. The result of changing the section
from what is theoretically required would probably be a lessening of the effectiveness
of the centre design.

4.2 Second Problem

The results of attempting to solve the first problem suggest another approach.
It is noted that to achieve the desired pressure distribution the thickness has to be
concentrated towards the leading edge at the centre. This indicates that it might be
beneficial to let it go in this direction by the simple expedient of extending the
leading edge forward near the wing apex. Such a planform modification also seems
reasonable on other grounds. It increases sweep locally near the centre just where it
is needed. Whether or not the disadvantages of changing from a simple swept wing more
than outweigh any advantages found in the present analysis cannot be decided at this
stage. However, it may be noted that the same approach has been applied before. It
must suffice here to investigate the type of pressure distribution produced by plan-
form modifications of a fairly modest extent. The new feature is that the results of
such changes can now be determined easily (albeit only for inviscid flow and even this
only approximately) as a result of using three dimensional theory. Previously the pre-
liminary design of planform variations has all very probably been done using 'composite'
theories of the type outlined in Ref. 5. These are known to give poor results for
cranked planforms.

Initially a rational 'oasis for arriving at the planform changes selected for "
study was attempted. Subsequent results invalidated the simplified basis that was
used. For this reason only the planforms and their pressure distributions are given
here with no explanation for their selection.

Three planforms for which calculations have been made are shown, together with
their respective centre region isobar patterns in fig. S. Results .or one case of
extending the chord both forward and aft are included, the aft extension being added
to see what the implications of this change are. An aft extension is often included
in practical designs in order to accommodate the main undercarriage.

The sections on these modified wings were kept everywhere the same as on the basic
wing (9 percent RAE 101). Consequently, the increases in chord correspond to increases
in thickness near the centre, a feature of some practical significance.

An assessment of the modifications was next attempted. For this purpose a simplified
form of the second of the rules given in Section 3 was employed. The method of assessment
adopted was as follows.

From the calculated pressure distribution the line of peak negative pressure is
identified and its sweep determined as a function of spanwise position. From this
'effective' sweep angle which, by a similar argument to that given before, must drop
to zero at the centre, and the flight Lach number, the critical pressure coefficient,
Cpcrit , is found. This is the value of pressure coefficient which makes the component
of velocity resolved at right angles to the line of peak negative pressure equal to the
local sonic velocity. The actual Cp calculated by the first order theory is now fac-
tored so that the 'sheared wing, is just critical at the calculation Machnumber. (A
value of 0.8 for this Mach number was used in the present work.) The factor needed is,
of course, the factor to be applied to the original value of thickness/chord ratio
used in the calculation in order to make the sheared wing just critical. The new
values of minimum pressure coefficient, Cpmin, are next determined as a function of
spanwise position. If, locally, the value of Cpcrit exceeds that of CPmin then the
criterion referred to is not satisfied in this region.

Fig. 9 shows that on the basis of this assessment the modifications can give a
considerable improvement over the basic wing, although in none of the cases is the
criterion satisfied everywhere. It is also seen that merely increasing the size of
extension does not produce a consistent improvement. The reason for this is that the
change in Cpcit (unlike that of Cpmin) does not take place in regular fashion as it
depends on the sweep distribution of the minimum pressure line and this varies in a
complex way.
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The method of assessing the modifications is open to criticism for a number of
reasons. The mcat obvious of these is that to achieve full use of swept wing plan-
forms (i.e. making the sheared wing portion just critical) results in velocities
which are well in excess of the local sound speed. The subsonic -theory is then
really inadequate.

For this and other reasons it is important to test the results produced by this
approach against experiental work. It would be rather surprising, however, if at
least som.i of the improvement shown theoretically were not reflected in the real
flows.

5. Conclusions

An attempt has been made to design the centre of an isolated non-lifting swept wing
on a simple basis. There are indications that improvements to the basic wing flow can be
produced, although the changes which result from root section modifications are limited by
the awkward shapes required, particularly at high subsonic Mach numbers. Clearly, not all
the possibilities have been explored and further ideas might produce more significant
advantages. Firm prbgress, however, depends primarily on two advances. The first is that
the range of validity of the simple theory should be found, preferably when edge correc-
tions and Mach number factors are included. Secondly, a simple but effective design
criterion is needed.
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SUMARY

The paper discusses the likely objectives for a three-dimensional sweptback wing design for
operation at high subsonic speeds, and the alternatives that may be open to the designer in order
to, achieve these objectives. The main emphasis is on the factors that have to be borne in mind
when choosing suitable target pressure distributions and isobar patterns. Results for two wings
tested at A.R.A. are used in illustration. For one of these wings, the isobar pattern is relatively
uniform and the shock first appears aft of the crest; for the other, the flow pattern is more
complex and in particular the shock forms ahead of the crest at a Mach number well below the design
cruise condition. The paper refers to some of the compromises that are often accepted to meet
engineering or structural requirements, and the need for research to establish the true exchange
rates involved in these compromises.
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1. INTRODUCTION

The Likely "High Speed" Objectives

This paper is concerned with the aerodynamic design of three-dimensional sweptback wings for
operation at high subsonic speeds. Methods of design are only mentioned incidentally; the main
emphasis is on some of the factors that control and some of the problems that arise in the choice
of suitable target pressure distributions and isobar patterns to meet specific design objectives.
In practice, to be successful, the design of a wing for any actual aircraft project whether it be
a civil transport or a military strike-fighter is essentially a matter of compromise, e.g., between
aerodynamic, structural, engineering, weight and cost considerations, between low speed and high
speed aerodynamic requirements etc. Even just considering the high speed aerodynamics, the wing
design will often have to meet various different objectives; typical aims would be to obtain

(a) the highest possible MD, the Mach number for the onset of the rapid increase
in wave drag at a given CL, for a given thickness/chord ratio and sweepback.
This may be better expressed by saying that the aim will often be to achieve
a target -value of MD with the thickest possible wing, for the sake of lower
structure weight, increased fuel capacity etc. and with a modest and not too
extreme sweepback for the sake of better take-off, landing and off-design
characteristics,

(b) as low a drag as possible at M - MD. To judge from a recent study1 of the

cruise drag of a number of subsonic transport aircraft, this particular
objective should be given added prominence in the initial design stage,

(c) also, the smallest possible initial rate of increase of CD with M beyond
M = M. This point is importaat since the best cruise performance is

usually obtained at a Mach number possibly 0.02 - 0.03 in excess of MD
and there will often be a tendency to fly as close to the buffet boundary
as possible,

(d) a satisfactory MD - CL boundary with probably little variation in MD with
C L . This could be particularly important for a short-range aircraft

for which there were no dominant Mcruise' CL conditions,
cruise

(e) a satisfactory margin between the drag-rise and flow separation
boundaries, both in terms of CL at and below Mcruise and in terms of M
above MD at cruise C,

(f) a progressive flow breakdowr at the stall giving not only a satisfactory
useable CLMAX but also adequate buffet warning and acceptable pitching

moment characteristics.

The relative aims of these objectives will vary according to the type of wing and the type of
aircraft: for example (a) - (d) would be particularly important for a transport, (f) for a fighter
etc. Any single wing design considered for a particular application is unlikely to be the optimum
solution for each of the above objectives; the designer will have to decide on the best compromise.
The aim of the present paper is to illustrate some of the available options and some of the factors
that should guide his choice.

2. CHOICE OF BASIC DESIGN PRESSURE DISTRIBUTIONS

It is probable that before starting on the detailed design of the wing to meet the objectives
set out above, the aspect ratio, taper ratio, minimum acceptable thickness/chord ratio and maximum
acceptable sweepback will have been defined at least approximately by other considerations. The
first aim (at least for a transport) would then be to design the wing to achieve a sufficiently
high MD at the design (usually the cruise) CL. The normal procedure starts by choosing an upper-

surface pressure distribution and thickness form for the equivalent two-dimensional section.
Obviously, there are many alternative options even at this stage and the thickness/chord ratio for
example that will prove acceptable can depend greatly on what option is selected. This point can
be illustrated quite simply by referring to the predictions in Ref.2 for the family of shapes
defined in Ref.3. These sections are designed to give a roof-top upper-surface pressure
distribution back to a position xp followed by a linear pressure rise to the trailing edge, combined
with a thickness distribution such that the maximum velocity due to thickness also occurs at xR.
The importance of xR as a design variable can be seen from Fig.l. This shows that for a given

MD1 extending the roof-top from xR - 0.3 to xR - 0.6 gives an increase of about 0.3 in CL for a

given thickness/chord ratio or alternatively, allows an increase of 0.04 - 0.05 in thickness/chord
ratio for a given design CL. These trends cannot be exploi*,ed too far since ultimately, the

boundary layer may not be able to negotiate the adverse pressure gradient aft of the roof-top
without separating even at full-scale Reynolds numbers. In some instances, this limit may be
reached before xR = 0,6. Even advancing beyond the rear-separation boundary at the best available
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tunnel Reynolds numbers may be considered undesirable because of the consequent difficulties in
interpreting the model test data. Leaving aside this particular issue, however, this class of

section design can still be rated as conservative; tests have shown that significantly higher
values of MD can be achieved for a given XRs t/c and CL, e.g. from extra loading at either the

front or rear. Improvements could be obtained either by modifying the thickness form while still
retaining the same upper surface pressure distribution or by modifying the latter. Fig.2, for

example illustrates how two sections of the same thickness/chord ratio could be proposed to give

the same predicted I at roughly the same CL. The full-line curves in Fig.2 are for a section with

xR - 0.5, taken from the family just described. In this case, a shock wave would be expected to

form first at a position aft of the crest (xcR ' 0.35) at a Mach number close to the predicted M.

The other section gives a pressure distribution of the peaky-type discussed in various 
papers4,

5

by Pearcey and others. In this case, a local supersonic region terminated either by a shock or

ideally, a largely isentropic recompression would form ahead of the crest at M < MD; with

increasing Mach number, the shock wave would move aft, passing over the crest, (xCR ' 0.25) at

about H - MD. The extra lift from the supersonic region ahead of the crest is one of the reasons

why the total lift produced by the two sections is virtually the same. These two aerofoils are

therefore equivalent in terms of MD for a given t/c and but even in two-dimensional flow, could

well give a different CD at MD and a different off-design behaviour.

Other comparisons could be presented with for example, sections giving extra rear-loading but

it would be wrong to suggest that the choice lies between different classes, e.g., peaky, roof-top

or rear-loaded. The comparison in Fig.2 was included largely because it highlights how the choice

of a two-dimensional pressure disttibution can have a major effect on the problems encountered in

designing the three-dimensional sweptback wing. It is fashionable - although not necessarily

correct - to design the three-dimensional wing to obtain a "uniform isobar pattern" i.e. the same

chordwise pressure distribution at all spanw; a stations. For the roof-top type, this "merely"

involves knowing how to vary the section shape across the span, how to shape the body and how to

modify the planform near the tip, in order to counter the root- and tip-effects in subcritical flow.

With a peaky-type distribution such as for section II in Fig.2, however, the flow at MD is

supersonic over part of the surface and therefore, retention of MD as the design M for the three-

dimensional wing implies that one can estimate how the three-dimensional root- and tip-effects are

likely to affect this supercritical development. The alternative approach of designing for a
lower Mach number where the flow would still be subcritical everywhere may Llso have its pitfalls

since for a wing of say 350 sweepback, this could mean reducing the design Mach number by as much

as 0.15 - 0.2. These matters are currently being investigated in a research programne at A.R.A.

Experimental results are not yet available but some of the design calculations for a wing in this

programme are referred to in section 5 below (Fig,6).

3. CON'URSION FROM TWO-DIMENSIONAL TO THREE-DIMENSIONAL CONDITIONS FOR WINGS (e.g.A) WITH

RELATIVELY UNIFORM ISOBAR PATTERNS

For a constant-chord, infinite sweptback wing, the conversion from the equivalent two-

dimensional section raises no difficulty. It has been demonstrated experimentally on several

occasions 6,7 that the pressure coefficient on the swept wing at a free-stream Mach number M and

lift coefficient CL is given by

C C cos 2 A
P3D P2D

where A is the angle of sweepback

and C is the pressure coefficient in two-dimensional flowP2D

at M cos A, CL sec
2 A for the section normal to the leading

edge of the swept wing.

For a tapered, fi..ite wing, hcwever, the process is less straightforward even when merely

considering the mid-semi-span region away from the immediate vicinity of the root or tip. Several

possible methods can be suggested. In the past, the common debign practice having chosen a

suitable 2-D section, has been simply to factor the section ordinates by cos A (where A is the

sweepback of the lines at constant x) .n order to derive the 3-D section in the free-stream
direction. Wing A for which rest data art presented in Figs.3, 4 is an example where this practice
was followed. It iA .ng with 250 sweepback on the 0.25c line, a taper ratio of 0.33 and an

aspect ratio of 8.0, - local sweepback varies from 27.50 at the leading edge to 15.50 at the

trailing edgn. It c4 Je described as a "relatively simple example" in that the sweepback is only

modest, the chordwise presere distributions are fairly similar at all stations across the span

and the flow is subcritical everywhere almost up to MD (0.73) at the design CL. The section shape

varies however across the span and only one "equivalent two-dimensional section" was tested. This

was incorporated (with minor modifications dictated by practical considerations) in the three-

dimensional design at about 0.25 x semispan. Fig.3 includes a comparison for the design CL and

at a Mach number slightly above MD between the 3-D and 2-D data for this station, the 2-D data

beitig converted to 3-D conditions simply on the basis of
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C -C c0 2 t, at the appropriate C = C cs 2 A0.25P31 P2D LL3D L2D
It will be seen that in general, the converted 2-D and the 3-D data in Fig.3 are in fairly

good agreement. This is true, for example, of the rear-loading. Clearly, however, the super-
critical flow development at the rerr of the (approximate) roof-top is already beginning to differ
significantly. Amongst the factors responsible for this discrepancy, one can quote the following:

(i) this station at 0.25 x semispan is not far enough from the root to be unaffected by
the 3-D root effects. It is believed that this is the main reason why over most of
both the upper and lower surface, the pressures are lower in the 3-D case,

(ii) even leavin- aside possible root and tip-effects, factoring the ordinates by cos A
is only to the first order, the same as aiming for C C coB2 A . For exampte,

if one considers the simple case of a symmetrical wing at zero incidence in
incompressible flow, the standard formula 9 in use in the U.K. for estimating the
surface pressures over a swept wing, reduces at the maximum thickness position to

C * -2 cosA S(1) (x)
P3D

where S(i) (x) - dx'
W -x- x ''

It follows that

C P C cos
2 A

P3D P2D

since S(I) (x) cos A. dzt/cos All dx'

0 dx x - xt
x - X'

Similar, but quantitatively different, arguments apply in respect of the velocities
due to camber. It is possible to show that accepting the above formula for C asP3D

a valid expression for a tapered wing with A thus varying with x, the general
result is for C P3< Cp2D cos

2 At, near the lading edge and vice-versa - consistent

with the comparison in Fig.3,

and finally,

(iii) even if exact equivalence between C and C cos2 A were obtained at subcritical
P3D P2D

speeds, this is not what is required to produce the same supercritical development.
This is perhaps the most important point of the three. Suppose, for example, that
the 2-D distribution is a true roof-top. The C distribution derived as above wouldP3D

then have a peak at the rear of the roof-top but to obtain the same initial super-
critical development, one needs a peak at the front and a "sloping roof-top"
distribution parallel to the variation of C * with x (where C * is the criticalP p
pressure coefficient in a direction normal to the lines at constant x).

This discussion may appear a little academic in relation to the 250 sweptback wing of Fig.3
but even here, it is estimated that the combined effect is to reduce the drag-rise Mach number at a
given CL by about 0.02. For a wing of higher sweepback or greater taper, the effects would be more

appreciable and could well react on the choice of a suitable section/pressure distribution. In
view of point (iii) above, it may be preferable to think in terms of "equivalent pressure
distributions" rather than "equivalent sections", e.g., a "sloping roof-top" rather than a
"roof-top" but even then, the eventual supercritical development could still differ significantly.
This is because quite apart from the various 3-D factors to be discussed later in section 6, the
supercritical development depends on both the pressure distribution and the surface curvature
distribution.

Two consequences of adopting an "equivalent pressure distribution" approach are first, it
tends to reduce the potential advantage to be expected from a rearward extension of the roof-top
and second, it implies that on the tapered 3-D wing, more lift can be carried near the leading edge.
With xR - 0.4 - 0.5, increasing taper should generally tend to increase CL for a given MD, t/c or

alternatively, MD for a given CL, t/c.

b.
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4. STUDY OF RESULTS FOR WING-A: AT AND ABOVE "DESIGN" CL

It has been seen that the method used for converting from 2-D to 3-D on Wing A has led to some
reduction in MD at the design CL. For some applications, this could have been serious but in the
present instance it did not conflict with the main design aims which were to obtain a high useable

CL at all Mach numbers up to the cruise value, and a satisfactory flow breakdown across the wing at

the stall. Considerations such as the value of MD at the cruise CL were of rather less importance

- always provided some minimum target figure was achieved.

The changes in pressure distribution across the span as shown in Fig.3 should also be viewed
in the same light. The two main trends evident at the cruise CL are

(i) a decrease from inner to outer wing in the suction values near the leading edge -
thus leading to a stronger shock near O.4c on the outer wing,

and (i) a reduction particularly between 0.675 and 0.88 x semispan in the adverse pressure
gradients at the rear of both the upper and lower surfaces. This is achieved by a
reduction in the local thickness/chord ratio near the tip.

At the cruise CL, (i) is clearly harmful in terms of MD and (ii) is unnecessary but they should not

be regarded as weaknesses in the design since both were aimed at improving the performance at
higher CL.

The wing design was in fact outstandingly successful in its main aim as can be seen from Fig.4
which presents the pressure distributions for CL - CLdesg n + 0.04 at M - 0.71. Features to note
on Fig.4 include the following:L

(a) no trailing-edge pressure divergence at any of the four stations,

(b) the shock front swept back at an angle greater than the local geometric sweepback,

(c) some isentropic recompression ahead of the shock at all four stations

and (d) a fair degree of loading at the rear, again at all four stations.

The results for this wing have shown therefore that the idea of designing for essentially a roof-top
pressure distribution over the upper surface at the cruise condition and then shaping the leading
edge to obtain some peaky-type development at higher CL is an attractive concept, particularly when

good results are required over a wide range of operating CL.

5. DESIGN OF REGION NEAR THE ROOT OF A SWEPTBACK WING

To obtain a particular isobar pattern over the whole wing in the design condition one needs to
be able to calculate the pressures over wings of arbitrary geometry in regions where no equivalence
with two-dimensional flow can be expected. Common practice in the U.K. has been to use the method
largely developed at the R.A.E. over the past 10 - 15 years and published 9 in R.Ae.S. T.D.M.6312.
In its present form, the method applies to compressible, subcritical, inviscid flow. It is based
on an approximation to the linear-taeory solutions for both thickness and lifting effects combined
in such a way as to include some of the cross-coupling terms and with corrections to allow for the
principal non-linear effects particularly near the leading edge. For the thickness terms, the
starting points were the exact linear-theory expressions for the velocities over an infinite yawed
wing, and at the root of an infinite swept wing of constant chord and section shape. These two
expressions are then linked with the aid of various approximate interpolation factors derived
mostly from a study of the exact solutions for wings of relatively simple geometry but partly based
as will be seen below on experience from comparisons with experimental data. Similar techniques
were followed for the lifting terms except that in this case, the velocity distribution at the root
due to camber was itself only known as an approximate expression having an accuracy strongly
dependent on the angle. of sweepback I0 . Used with due regard for the limitations imposed by the
approximate nature of the interpolation factors, the absence of many of the second-order terms and
of any allowance for the viscous effects, the method has proved a powerful design tool.

For applications where the drag characteristics at the cruise CL are of paramount importance,

the wing design near the root needs special care. As is well known, to maintain fully swept isobars
into the root involves either appropriate body shaping and/or changes to the wing section shape such
as a forward movement of the maximum thickness position. Any large local changes in the wing
section geometry must tend - at least, in principle - to reduce the accuracy of the formula (or
indeed, any other method) for calculating the pressure distributions. This point is illustrated
by the comparison presented in Fig.5. These results are for the root section of a symmetrical,
40 sweptback wing at zero incidence; in an effort to improve the isobar sweep, the maximum
thickness was brought forward to O.15c at the root as compared with O.42c over most of the span.
The main uncertainty in calculating the pressures at the root of such a wing by the method of Ref.9
lies in deciding what values to assume for the "thickness sweep". For a wing with no change in
section shape across the span, this would normally be taken as the sweep of the lines at constant x,
i.e. At as defined earlier, but Fig.5 shows that if this were done in the present case, the

predicted values of (-C p) over much of the chord would be more than twice those obtained
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experimentally. This result was not foreseen when the wing was designed (some 14 years ago!) and
as a result, the isobar pattern and wing performance were unsatisfactory as described in Ref.ll.
Fiq.5 shows however that defining the "thickness sweep", At, at the maximum thickness position (xt)

as the sweep of the maximum thickness line and then varying tan At linearly both between x - xt and

x - 0 and between x - xt and x = 1 gives results that are in fairly good agreement with the

experimental data, at least back to x = 0.5.

It is important to realize that a suitable definition for the "thickness sweep" is only one
item in a "package". Any change in other items such as the factors for planform and thickness
taper or the compressibility factors, could react on what is the most suitable definition for the
"thickness sweep". Earlier, for example, when some of these other factors were less soundly based,
a mean of the above two definitions appeared to be the most satisfactory but now, this is no longer
true! Clearly, this particular wing design is a sonewhat extreme example: the sweepback of the
maximum thickness line at the root is 670 as compared with a quarter-chord sweepback of only 400.
In many practical cases, the sensitivity of the results to the geometrical assumptions and the
other interpolation factors would be less pronounced.

Over the years, the accuracy and range of applicability of 'he various factors has been
steadily improved but results such as those just discussed pose the question as to whether some
more radical changes to parts of the method are required. Considerable thought has been given to
this point. Continuing to discuss just the thickness effects, clearly, one of x:he most important
advances in recent years has been the method 12 '13 and computer programme developed by A.M.O. Smith
and his colleagues for calculating the velocities due to thickness in incompressible flow over
wings and bodies of completely arbitrary shape. As a result, an exact linear-theory solution is
now available against which the appropriate "block" in the formula of Ref.9 can be checked in
carefully selected "test cases". Alternatively, this "block" could be actually replaced by the
output data from the A.H.O. Smith programme, and this has in fact been done1 4 by Loeve of N.L.R.
It should prove most helpful to have this facility available for use when required but its drawback
when considered as a general design tool, is that this programme would be relatively costly to use
and also restricted to the larger computers. In practice, when selecting a wing shape for a given
application, one would probably want to calculate the pressures over a fair number of alternative
designs and at a number of different operating conditions. There will therefore continue to be a
place for treating this tera (velocities due to thickness: linear theory) on a less elaborate
basis: either by continuing to use the present factors modified where found necessary or by
adoption of a method such as that proposed in Ref.15.

One point that must be stressed is that in several important respects, the method of Ref.9
should be more accurate than linear-theory. It follows that in the future, improvements e.g.
inclusion of further second-order terms or of allowance for viscous effects, can be introduced
without departing from the essential framework of the present formula. It will thus be possible to
continue the steady progressive evolution based on comparisons with other theories and experiment
that has marked the previous development of this method.

This discussion has however been somewhat of a digression from the main theme of this paper,
which is more concerned with the question of what are desirable target pressure distributions and
isobar patterns rather than what methods one should use to find the geometry corresponding to these
pressures. As noted earlier, a common aim has often been to try and obtain a "uniform isobar
pattern". This is not necessarily the best solution: research over many years has shown that at
least when considering the initial development of a shock, the Mach-number component normal to the
isobars is the relevant parameter and hence there may be a case to strive in selected areas for an
isobar sweep greater than the local geometric value. Certainly, one ought as a general rule to try
and avoid any serious loss in effective sweep, e.g. through the isobars forming closed loops. This
is often difficult to achieve near the root since the major 3-D root effects decay with distance
from the root in a hyperbolic fashion. It follows that to obtain a perfectly uniform isobar pattern
it would be necessary to have continuous surface curvature (spanwise) with very rapid local changes
near the root. In practice, however, the preference has usually been for straight generation
between a limited number of control stations. Up to a point, -'is may be acceptable but there can
be little doubt that with many designs, some aerodynamic perfoLmance has been lost through the control
stations being either too few in number or wrongly positioned. Some recent calculations for a 350
sweptback wing illustrate what can then happen. Pressure distributions for four stations on the
inner wing are presented in Fig.6. The general aim of this design was to try and obtain similar
peaky-type upper surface pressur distributions at all four stations. In the lower picture in Fig.6,
stations I (i.e., the root) and 4 (the outermost station) are both control stations and the
comparison is between results for station 3, considered alternatively as a further independent
control station or with its surface geometry interpolated linearly between stations i and 4. The
upper picture gives a similar comparison for station 2 lying between 1 and 3. The calculations
assume that the flow is still subcritical at H - MD; the real flow would be supercritical but with

the shock lying near or ahead of the crest, provided the design is successful in its aims.

Fig.6 shows that a much closer approach to a uniform isobar pattern is achieved if all four
stations are allowed to be control stations. If an intermediate station is omitted, relatively
high suctions are then predicted for the intermediate region over the forward part of the chord.
Alternatively, it is easy to visLalise that if stations 2, 3, 4 were retained and the geometry at
the root derived as an extrapolation from 2 and 3, there would then be relatively low suctions at
the root and a general loss of isobar sweep inboard of station 2. Either of these alternatives
could have particularly unfortunate consequences in the present case as it might upset not merely
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locally but over the whole region from 1 to 4, the desired favourable supercritical development
expected on the basis of some relateJ 2-D tests. The consequent reduction in MD and/or increase in
CD at MD is difficult to estimate and experimental results are not yet available. General

experience based on far more than just this one example has shown that aerodynamically, 3 should be
regarded as the absolute minimum number of control stations over the inner part of the wing; on
engineering grounds, 3 is often thought of as a maximum number and efforts are frequently made to
persuade the aerodynamicist to accept 2! This is an area where there is an outstanding need for
combined aerodynamic, structural and engineering studies to establish the true exchange rates
involved in such compromises.

The calculated results in Fig.6 contain some other features of general interest. For example,
it will be seen that even with 4 control stations, the desired peak suction was no! apparently
obtained close to the leading edge at the actual wing-root section. In theory, this could have
been generated-either by adopting a very bluff shape or from extreme inverse droop, but probably at
the expense of excess drag. Also, the suctions near O.6c at station 4 appear somewhat high; to some
extent, this is related to the wing planform with the trailing edge unswept over the inner panel.
This has been a common feature of many recent subsonic transport designs, being often introduced to
give an unswept hinge-line for a flap or to assist the stowage of the undercarriage. One suspects
that a significant loss in performance either in terms of MD , CD at MD or supercritical behaviour

may often result from these planform details or from local changes in the wing thickness
distributions introduced for similar reasons. Again, this could be a fruitful area for research
studies to find the exchange rates and hence, improved all-round "optimum designs". Wing-root
fillets and fairings on the fuselage opposite the wing could usefully form part of these studies
rather than being treated in an ad-hoc fashion at a later stage or simply being designed "on past
experience".

6. THREE-DIMENSIONAL INFLUENCE ON SUPERCRITICAL FLOW DEVELOPMENT INCLUDING STUDY OF RESULTS FOR
WING B: AT AND ABOVE "DESIGN" H

The discussion in the preceding section was based on "subcritical" calculated pressure
distributions; let us now turn to some experimental data for a wing where the flow is already
supercritical at H - MD and where even at the design CL, there is considerable non-uniformity

across the span. Results for this example, wing B, are presented in Figs.7, 8.

Fig.7(a) gives a comparison between 3-D and converted 2-D data for two stations (at 0.28 (I)
and 0.60 (II) x semispan) at the design CL and M -MD - 0.10. Even at this Mch number, the flow

is already supercritical near the leading edge at both stations. The agreement with the converted
2-D data is reasonable at station II but at station I, it is not as good as for wing A discussed
earlier. Largely, this can be explained in terms of the higher sweepback of wing B (and hence,
greater root-effects), the thickness taper related to the section variations across the span and
finally, the wing planform geometry which further complicates the process of deciding what is the
true "equivalent 2-D section". By H - MD + 0.01, Fig.7(b), the order of agreement between the 3-D
and 2-D data has deteriorated further and discrepancies are now observed at both stations I and II.
Over the rear of the chord, theat, can be explained in the same way as for the lower Mach number -
the effects have merely increase 6 in magnitude and extended further out, e.g., the higher suctions
in the 3-D data near O.4c at station Il can be linked with the high suctions near 0.5 - O.6c at
station I. Differences are also evident however in the development of the local supersonic region -
to some extent at 1i and more particularly at I. It is impossible in this brief account to comment
in detail but it is worth pointing out that both the 2-D and 3-D data are very sensitive to small
changes in either M or CL . It is therefore reassuring to find that at station II at least, there
is some "family resemblance" between the variation of the 2-D and 3-D data with M or CL. At

station I, however, there apiears to be a more substantial difference in behaviour: whereas the
2-D data suggest a supersonic region terminated by a shock, the 3-D distributions indicate a much
higher peak suction near the leading edge followed apparently by considerable isentropic
recompression and no real evidence of any strong shock. This impression was confirmed by oil-flow
studies. One relevant factor is that the sweepback of the isobars over the forward part of the
chord near station I is much higher than the local geometric sweepback. This can be seen from the
isobar patterns for H = HD and H - MD + 0.04 presented in Figs.8a, b.

Comparing these two isobar patterns, the shock front near station II clearly moves rearward
with increasing Mach number in this range whereas near station I, there is relatively little
change. As a result, by H - MD + 0.04, the sweepback of the shock front near I is near 500 rather
than 350 . One would expect therefore that the rate of increase with Mach number in the wave drag
associated with this shock front would be less near I than neat II. At first sight, however, this
is not borne out by the variation of the local section drag coefficients ACDL as derived from the

measured pzessure distributions. These are shown in Fig.8c, plotted in the form of ACDL vs. (H - MD)
where ACDL is the increment in CDL compared with the value at H - MD, and MD is the drag-rise Mach

number for the wing as a whole. The variation in the overall CD is plotted below for comparison.
It is clear that a spanwise integration of the values of c ACDL would yield a variation with Mach

L
number broadly similar to that obtained in the overall measurements but the changes across the span
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in the 'D variation are somewhat unezpected. Despite what was forecast above, it is section II
L

which appears to give the most favourable results in. the range up to (MD + 0.04).

To understand this apparent anomaly, one must consider how three-dimensional effects control
the development of the flow over the sweptback wing under supercritical conditions. Fig.9-helps to
explain this in a diagrammatic fashion. For any sweptback wing operating -iaeither CL : CLdesign

or M > Mdesign, it is likely that the flow over the upper surface, leaving aside the tip region,

will be characterised by a 3 (or 4)-shock system as illustrated in Fig.9. These shocks were first
explained and described in detail by Hall and Rogers in-several reports, e.g. Refs.16, 17, from the
N.P.L. The forward shock originates from either the wing-root leading edge or the most forward
point where the flow is supersonic. The mathematical condition that has to be satisfied for this
shock to lie across the wing surface is given in Ref.17; its sweepback is related to the resultant
Hach number of the local flow and so increases with CL at a given M, or with H at a given CL;

typically, it is around 500. The main significance of the forward shock is that it marks the
inward boundary of the region in which the supercritical flow development can be similar to that
over the corresponding two-dimensional section. Hence, in Fig.9, it is only outboard of point A
that the "quasi-2D" shock bears some affinity to the 2-D behaviour. Inboard and aft of the forward
shock, the flow is affected considerably by the influence of the root. Even if the inner wing
sections and the body shape are such as to minimise this influence at the design condition, there
can still be a considerable effect at off-design. Generally, the suction will increase over the
middle part of the chord of the inner wing and this is then followed by a recompression through a
series of waves which coalesce some distance out from the root to form a "rear shock". This shock
intersects the forward or "quasi-2D" shocks at point B. The "outboard shock" has the combined
strength of the two inner systems and frequently, therefore, the initial flow separation occurs just
outboard of point B. As the Mach number is increased further beyond the design value, the general
tendency will be for points A and B to come together and to move inboard but precisely what happens
in any given example clearly depends on the section characteristics, wing planform, the wing-body
junction shape etc.

With this very brief and simplified description, it is now possible to revert to the drag data
in Fig.8c for wing-body B for which the flow pattern for M > 1D is essentially of the type shown in

Fig.9a. Earlier, it was noted that it was difficult to explain the fairly substantial increase in
wCDLwith (M - MD) at station I at 0.28 x semispan in terms of wave drag associated with the shock

system over the forward part of the chord. Now, in terms of Fig.9a, it can be explained in terms
of the development of the rear-shock. Expressed another way, the increase in drag corresponds to
the increase in suction aft of the crest ahead of the rear shock. For section II, on the other hand,
it is possible to interpret the small increase in ACDL between MD and (MD + 0.04) by saying that the

increase in wave drag has been partly offset by a reduction with Mach number in the root-influence
on this section. This can be seen by comparing the pressure distributions for section 2 inset in
Figs.8a, b. The relatively high suctions near 0.3 - O.4c at M ; Mn were not observed in the tests
on the equivalent two-dimensional section (see Fig.7b) and can proBably be ascribed to root-influence.
No such irregularities were observed aft of the main shock at (MD + 0.04) or in other words, this

section then lies outboard of points A and B. ACDL can therefore be a poor indication of the wave

drag associated with the main shock front; the difficulty lies in knowing how CDL would vary with

Mach number in the absence of a shock wave. In the present case, the implication is that under such
conditions, CD would have decreased with Mach number at station II.

Finally, the comparison between Figs.9a, b has been included in order to illustrate that the
choice of basic design pressure distribution can have a major effect on the way the 3 (or 4)- shock
system develops at off-design conditions. The two pictures correspond diagrammatically with the
two alternative 2-D sections considered in Fig.2. With small x as in Fig.9a, the tendency is for

the quasi-2D shock to link on the inner wing-with the forward 3D-shock, thus leaving the rear-shock
as a clearly defined separate front. With large xR as in Fig.9b, the quasi-2D shock tends to link
with the rear shock luaving the forward shock as the separate system. Obviously, these pictures
and this description are grossly over-simplified but even so, certain conclusions are valid. For
example, the proportion of the wing span over which the local supersonic region can develop as in
two-dimensional flow is clearly greater in case (a); also, with (b), there is a greater likelihood
that the supersonic region ahead of the rear shock develops in a manner completely uncontrolled by
any expansion field being generated near the leading edge. It is not however the aim of this
paper to pronounce in favour of (a) or (b), This would be both premature and unwise particularly
as it is really misleading to think that there are just two classes of design. The distinctions
have been deliberately overdr n to simplify the discussion and tu highlight the problems that are
beinx investigated in current research.

7. GENERAL DISCUSSION AND CONCLUDING REHNARKS

Examples have now been given of how the choice of basic pressure distributions and isobar
patterns can affect the drag-rise Mach number (MD) and supercritical behaviour. For a transport
aircraft, another vital factor is the standard of achievement in respect of CD at MD and the extent
to which CD could be reduced by a change in the target pressure distributions. Indeed, it seems
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likely that in the past, there may-have been too much stress on obtaining the best value of MD with
too little regard for CD at MD or for dCD/dM near MD. Recent analysis has suggestedl' 18 that

typically, an increase of 10% or more in the wing-body drag coefficient (excluding the vortex-induced
drag) can be expected between low speeds and M MD but that the reason for this can vary widely
from one design-to another. The three most coron reasons are:

(i) an increase in the wing profile drag with Mach number at subcritical speeds,

(ii) premature supercritical wave drag appearing as a sectional effect somewhere
along the span,

and (iii) premature wave drag due to three-dimensional effects related notably to a loss
in isobar sweep near the root.

A method19 is now available for estimating (i) in two-dimensional flow; it has been shown to be
reliable for a wide range of pressure distributions. Also, a criterion has been issued 20 for
recognizing whether the pressure distributions are of the "triangular" type4 - one of the main
sources of (ii). Effect (iii) has already been discussed. Past experience appears to suggest that
if the excess drag from any two of these sources is small, the contribution from the third item is
appreciable but there is no reason why this should necessarily follow. It is merely an indication
that all three effects should be considered at the initial design stage.

This paper, in its examples at least, has tended to concentrate on sweptback wings of high
aspect ratio, typical of subsonic transport designs. It is however worth noting that at a design
point with fully attached flow the problems encountered in designing a swept wing for a
strike/fighter application are likely to be similar in principle, although differing in detail.
Even though the wings would be of much lower aspect ratio, it is still possible to relate the
behaviour at such a design condition with corresponding results in two-dimensional flow. Naturally,
the three-dimensional root effects have a stronger influence but Ref.9 has still been used as a
design method with conspicuous success.

The real differences between the two types of application arise when considering off-design
conditions. For example, the stalling behaviour of swept wings of moderate aspect ratio is likely
to be determined by 3-D effects such as part-span vortex sheets or a separation induced by a
forward- or rear-shock rather than by an outboard quasi-2D shock. Also, for a strike/fighter, a
satisfactory flow breakdown across the span at the stall in manoeuvering flight may often be the
major criterion when seeking an acceptable wing design. Normally, one wants a progressive rather
than a sudden flow breakdown and the choice of a uniform isobar pattern in the design condition may
make it more difficult to realise this aim. Nevertheless, experience has shown that ways can be
found for resolving this dilesma.

To suassarise, the best possible wing design for any given application must always be a
compromise. The object of research must be to find what are the major factors, to establish the
exchange-rates and so help the designer co make the best choice. It is hoped that this paper has
made a contribution in this respect.

Finally, the author wishes to acknowledge the help received from other members of the A.R.A.
staff and from colleagues in industry, the R.A.E. and N.P.L. in the preparation of this paper. He
takes full responsibility however for the opinions expressed.
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An Approximate Method for the Determination of the Pressure Distribution on Wings

in the Lower-Critical Speed Range

by

Th.E. Labrujere, W. Loeve and T.W. Slooff

National Aerospace Laboratory NLR, Amsterdam
Netherlands



Summary

The design of aircraft for efficient flight at high subsonic epeed. demands for
methods by which the pressure distributions on wings can be predictied accurately.

The present-paper is conoerned'with ar approximating method that is based on the
fact that tho main charaoteristicfi of subsonic flow about wings are described rather well
by the linearised potential equation. in viewof this, similar to Goethert's rulei the
oompressible flow is related to the incompressibl, flow around an analogous oonfiguration
which is obtained from th original 6e by an affine transformatioD. The. incompressible
flow is determined by means'rf a surface distribution of singularities and the Gosthert
slation is supplemented with semi-empirical factors. Viscosity effects are taken into

account by applying the method to a configuration that is obtained by modifying the
contour of the aerofoil for the differential growth of the boundary layer displacement thickness
on the upper and lower surface.

The accuracy of the method is shown by compariso with exact resul s for two-dimensional
flows and experimental results for two- and three-dimensional flows.



Notations

Symbols.

O length of local chord

r body radius

t maximum thickness of aerofoil section

u perturbation velocity on the surface of the aerofoll

x chordwise coordinate

y spanwise coordinate

z coordinate measured normal to the reference piane of the aerofoil

compressibility fictor according to Wilby (ref.2)

C pressure coefficientP

C L  lift coefficient

Ma Mach number of the onset flow

V total velocity non-dimensionalized by the velocity of the onset flow

0 angle of attack

/3 
M,

spanwise coordinate non-dimensionalized by the semi-span

£e parameters defining lifting quasi-elliptical aerofoil section (ref.1)

Subscripts.

a refers to the analogous configuration

i refers to the incompressible flow

Superscripts.

(1) refers to the first order approximation

2 refers to the critical condition
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An Approximate Method for the Determination of the Pressure Distribution on Wings

in the.Lower Critical Speed Range

by
x) X) xx)

Th.E. Labrujere, W. leve and J.W. Slooff

National Aerospace Laboratory NIR, Amsterdam
Netherlands

1 Introduction.

For flight at high-subsonic speeds special attention must be paid to the avoidanoe of
large drag, which occur as a result of pressure losses due to viscous effects and shocks.
Tokeep these phenomena within aoceptabl~e fimits an iteration process is applted, in practice,
in which use is made of both measurements-in wind tunnels and aerodynamic calculations.
The 6onvergenoe of this process largely depends on the accuracy by which details of flow
phenomena on wing-body combinations can be predicted. As exact solutios for visoous
compressible flow about such oonfi urations do not exist, only approximating methods can be
applied.

Recent developments in transonicwing-desigut appear to lead to geometries for whioh
in many cases existing methods are no longer satisfactory. The present paper is concerned
with an approximating method-which has been developed with the object to improve this
situation. In doing so special attention bas been paid to the prediction of compressibility
effects-at conditions where the velocity components normal to the isobars are near-sonic.

2 Description of the method.

2.1 General remarks.

It is well known that the main characteristics of subsonic attached flow are described
rather well by the linearised potential equation. In the present method the solution of this
equation is approximated in-a way very similar to the Prandtl-Glauert and Goethert rules.
Considering a wing-body combination in an onset flow with Maoh number Ma, the compressible
flow around the given configuration is related to the incompressible flow-around an analogous
configuration. This analogous configuration is obtained from the original one by shrinking

all dimensions normal to the onset flow direction by the faotor/3 - { 1 - Ma2) 1. When
applying linearised theory the incompressible flow is usually determined by means of a
chord-line distribution of singularities. In the present method, however, a surface distribu-
tion is applied. Also non-linear compressibility erfoicts are approximated semi-empirically
by supplementing the Coethert rule with correction factors depending on local flow
conditions. It may be emphasized that the present method has been developed in such a way
that wings both with and without body may be treated.

2.2 Outline of the method for the limiting case of two-dimensional symmetric flow.

According to full linearised theory, as formulated by Goethert, the perturbation
velocity u on a given aerofoil in compressible flow, is related to the perturbation
velocity u8 on the analogous aerofoil in incompressible flow. Considering first order
approximations, this is extablished by the well-known relation

U(1) 1 • iUs(1)

where the superscript (I) refers to first order perturbations. Non-dimensionalizing the
velocities by means of the undisturbed velocity, the total velocity on the aerofoil is then
determined by e

V - I + u() (2)

This result is in principle only valid for thin aerofoils with cusped leading and trailing
edges. In the incompressible case the first order result can be made uniformly valid for

x) Senior Research Engineer, Aerodynamics Division.

xx) Research Engineer, Aerodynamics Division.
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aerofoils with round leading-edges by applying Riegels factor, viz I

.[ 1 .1+9 (3)

where z - + z (x) is the aerofoil contour in the concerning symmetric case.
For compressible flow MIohemann and Weber (ref.1) havo modified this result in order

to take into account non-linear effects i

+ (1)4

The compressibility factor B may be chosen-according to the suggestion of Wilby
(ref.2) viz ,

Bw { - Ma2 (1 _ Ma.Cpi) M (5)

C is the local pressure coefficient in incompressible flow.
Pi Then eq.(4) represents a formula for the determination of the velocity on the aerofoil,

which is adequate for aerofoils with elliptic nose shapes. Important discrepancies with
exact results have been found for aerofoils with non-elliptic nose shapes. As may be
expected, when applying first order approximations, this is already the case at the
determination of the incompressible flow (/8- B - 1). In principle, the approximation
determined by eq.(3) may be improved by applyingWhigher order expansions of potential
theory along the lines of Ir~ai, Van Dyke and Gretler (refs 3,4,5). However, it has been
observed, when applying Gretler's approximation, that, especially in cases with rapid
variation of curvature, slow convergence may cause serious errors in both incompressible
and compressible solutions. An example is given in fig.i. Also, this approach is not very
well suited for application to three-dimensional configurations, especially when wing-body
combinations are concerned. (1)

In the present method such difficulties are circumvented by replacing ua in
eq.(4) by I

2I + (6
ua " Va 1 +(-) -1. (6)

Here V is the exact local velocity on the contour of the analogous aerofoil in
incompressible flow. Then eq.(3) gives trivially the exact solution in the limiting case
of incompressible flo, while in the case of compressible flow the solution is-
approximated by

V a  1 I* (7,) - 1 dz4

V - ';/Bw  .a1 + (d/ (7)

Va is determined by applying a distribution of sources along the contour of the aerofoil.

2.3 The two-dimensioral lifting case.

For the two-dimenuional lifting case eq.(7) is generalized by formal substitution of
the quantities for upper and lower surface respectively. The incompressible flow around the
analogous profile is determined by a surface distribution of vortices.

2.4 The three-dimensional case.

The three dimensional version of the present method is obtained by generalizing the
two-dimensional result. This is achieved by applying eq.(7) locally in the approximate
direction of the perturbation velocity. The velocity component thus obtained, is combined
with the undisturbed component of the onset flow to give the total velocity on the
surface of the wing. In the case of non-lifting wings the basic solution, i.e. the
perturbation velocity on the analogous wing in incompressible flow, is obtained by means
of the method of Hose and Smith (ref.6).

The determination of the incompressible flow about an analogous lifting
configuration is in the stage of programming. Again compreabibiliCy corrections will be
applied formally in the non-lifting case.
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Viscous effects.

When applying approximating methods for the calculation of pressure distributions on
wings, it is usually assumed that the main effects-of viscosity car be taken into account
by determining the inviscid flow around a modified aerofoil, which is obtained when the
boundary layer displacement thickness is added to the ordinates of the aerofoil contour.
Due to the wake this modified aerofoil extends to infinity downstream. The modification of
the aerofoil may be resolved into two main effects viz t a change of angle of attack and
camber and a change of thickness.

The latter only influences the flow in the immediate vicinity of the trailing edge.
It appears that for practical design purposes this effect can be negleoted. Therefore,
within the present method viscosity is taken into account by mer4oly considering the effect
on camber and angle of attack. This is achieved by adding to the ordinates of the contour
half the difference between the displacement thickness of upper and lower surface. Then the
inviscid flow around the distorted aerofoil is determined along the lines indicated- above.
An iterative procedure, where, alternately, the inviscid flow and the displacement thickness
are determined, leads to a pressure distribution adapted to the main effect of viscosity.

Examples of application.

On the majority of wings, designed for high subsonic speeds, the flow near the wing
surface is, up to v large extend, defined by the local geometry. Therefore, the applicability
of the present method can be illustrated by means of results obtained for the limiting case
of two-dimensional flow. This offers the possibility to check the accuracy of the results by
comparison with exact solutions of the full potential equation. Thus, uncertainties that are
present, when comparing with measurements, are avoided. Exact solutions of the full potential
equation have been obtained by Nieuwland and Sells. Nieuwland (ref.7) applies an inverse
hodograph method, by which the shape of a quasi-elliptical aerofoil is determined together
with its pressure distribution for a given whnbnher cfLheonset flow. Sells (ref.8)
applies a direct method, which, however, can only deal with-suboritical pressure
distributions. x)

4.1 Non-lifting cases.

Figs. 2, 3 and 4 are concerned with three non-lifting quasi-elliptical aerofoils which
have been determined for sub-critical flow. The nose shape of the aerofoil of fig. 2 is
nearly elliptic. Those of figs. 3 and 4 deviate increasingly more from the elliptical shape.
The pressure distributions obtained through the present method as well as the results
obtained by the Von Karsrn-Tsien pressure rule and the Goethort rule are compared with the
exact solutions. It ap;-ars that considerable improvement is achieved by the present method.
Fig. 5 deals with a quasi-elliptical aerofoil which has been determined for super-critical
flow. In fig. 5a the result obtained by the present method for near critical flow is compared
with the results of NLR experiments. Fig. 5b provides the comparison of the present
approximation with experimental results and the exact solution for the design Mach number.
It may be concluded that the present method is a useful means to predict pressure
distributions up to and including the lower critical Mach number. As might be expected the
approximation breaks down at super-critical Mach numbers.

In fig. 6 results of the present method are given for a non-lifting wing with
geometrigal characteristics in the range of practical interest (aspect ratio 6, mid chord
sweep 30 , thickness/chord ratio 0.09). From comparison with results obtained by means of
the Goethert rule it appears that the difference between the two approximations is of the
same importance as in the two-dimensional cases of figs. 2, 3 and 4.

A comparison with experimental results is given in fig. 7 for a wing of aymmetrical
srofoil section attached to a body of circular cross section at zero incidence.

The agreement between thq present approximation and the measurements is good. The
discrepancies at the rearward part of the wing are due to a laminar separation bubble
during the experiments.

x) The results of Selle have been obtained through the National Physical Laboratory and

the Royal Aircraft Establishment.
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4.2 Lifting oases.

As has been mentioned before the computer programme for the determination of the
three-dimensional incompressible flow around lifting wings is not yet ready. As a
consequence only two-dimensional cases are presented as examples.

In figs. 8 and 9 the results obtained by means of the present uethod for a lifting
quasi-elliptical aerofoil and for the NPL 3111 section are compared with the exact solutions
for potential flow together with the results obtained by the Von Yarman-Tsien pressure rule
and the Goethert rule. It appears that the differences are of the same importance as in the
non-lifting uases.

Fig. 10 deals with an aerofoil which, like the aerofoil of fig. 9, has been designed
for a "rooftop" type of pressure distribution. It appears that, if the influence of the
boundary layer is neglected, the discrepancies between the measured and calculated pressure
distribution presented in fig. 10 are larger than the comprrable discrepancies between the
exact and the approximate results of fig. 9. This situation is improved when viscous
effects are taken into account in the way described in sect. 3. In this case the boundary
layer has been calculated by means of the method of Nash and Mo Donald (ref. 9).
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The Aerodynamic Design and Testing of a Lifting Swept Wing-Body

Configuration with Shock Free Wing Flow at M 1.20

by

J. Bridgewater x)(National Physical 1~boratory,
Todd ington)

S.0.T.H an x) (Nationaal ILacht- en Ruimtevaartlaboratorium,
Amsterdam)

H. Kramer X) (Nationaal Iizoht- en Ruimtevaartlaboratoiium,
Amsterdam).

X) Research Enginaer.



A wing-body configuration -has been designed', with the intention of giving
economical cruise characteristics at low supersonic speeds. The design aim was -to reduce
the wave drag as far -as- possible by designing the wing and body in such a way that
boundary. layer separation and shocks on the wing are avoided. A wind tunnel model was made
according to thii design, consisting of a 550 swept warped wing mounted on an axially
symAetric waisted- body..

The presentation of the wind tunnel- test results has been confined to the design
Mach number X = 1.20 and the design incidence C- 2.50. The experimental pressure
distributioia-show good agreement with the theoretical pressure distributions except for
-a slight overexpansion on the wing uppersurface'near 30 % of the chord and a compression
on the wing lower surface. Due to these pressure deviations the measured wing lift is slightly
higher than the caloulated value. From the test results it-appears that over the main part
of the wing uppersurface the flow is superoritical. In spite of this the flow suggests no
indioation of the presence of shock waves.

It can be concluded that the design aim of achieving a wing-body combination
possessing good lift-drag characteristics-at M- 1.20, has been fulfilled.

• t



Notations

c chordlength

c rootchord

c aerodynamic mean chord

cD dragcoefficient

cL liftcoefficient

c pressure coefficient
p
c * critical pressure coefficientP

wing loading

14 Mach number

Re; Reynolds number based on the aerodynamic mean chord

x streamxise coordinate

y spanwise coordinate

z camber coordinateO

Ztwist height of wing L.E. above wing reference plane

oc angle of attack

'twist angle of wing twist

A angle of sweep

spanwise coordinate in fractions of half wing span.



18-1

The Aerodynamic Design and Testing of a Lifting Swept Wine-Body

Configuration with Shock Free Wing Flow at X a 1.20

by

J. Bridgewater x) (National Physical laboratory,
Teddington)

S.O.T.H. Han x) (Nationaal Lucht- en Ruimtevaartlaboratori=,Amsterdam)

H. Kramer x) (Nationaal Iucht- en Ruimtevaartlaboratorium,
Amsterdam).

I Introduction.

In the United Kingdom during the past decade much attention has been paid to the

development of swept wino-body combinations, intended to cruise economically at low
supersonic speeds (ref.1). The design aim is to reduce the wave drag as far as possible by
avoiding boundary layer separation and shocks of appreciable strength on the wing. Boundary
layer separation is avoided by choosing a suitable target pressure distribution, having
moderate pressure gradients. Strong shocks are avoided by designing the wing and body
waisting in such a way that over as much as possible of the wing the isobar pattern is
similar to the straight isobar pattern on the corresponding infinite yawed wing with sub-
critical flow. By making use of this approach, the flow on the wing can then be related to
the flow on an equivalent two-dimensional section, having the same thickness distribution
as the wing in the direction normal to the isobars. Since for three-dimensional flow
calculations only linearised theory can be used at present, this two-dimensional section
approach enables non-linear local thickness-lift interaction effects on the wing to be
included in the design.

The present paper concerns a detailed investigation of the applicability of the
design procedure, which formed part of an anglo-netherlands cooperation program, and
involved not only the Nationaal lucht- en Ruimtevaartlaboratorium (NLR, Amsterdam) and the
National Physical laboratory (NPL, Teddington), but also the Royal Aircraft Establishment
(RAE, Farnborough and Bedford) and the Aircraft Research Associati.on (ARA, Bedford).

2 Detailed design procedure.

According to the above mentioned method a lifting swept wing-body has been designed to
have a fully swept isobar pattern and to have a target streamwise uppersurface pressure
distribution based on a "rooftop" back to 30 % of the chord just close to critical conditions
at the design Mach number M - 1.20.

The overall dimensions of the win-body design have been chosen to be similar to those
of a promising proceeding design (ref.2). The configuration consists of a 550 swept wing with
curved tips, uses a 6 % RAE 101 section thickness distribution in streamwise direction
combined with three-dimensional camber and twist and has a waisted body (see fig.1) based on
the supersonic area rule.

The wingpressure distribution due to thickness has been calculated in three dimensions
using a linearined method (ref.3) in which the source strength at the wing leading edge has
boon corrected by means of the standard iype of multiplicative Riegels factor. In this way
a correction is made to the first order thickness effect for the blunt wing leading edge.
In addition the body side is treated as a plane of reflection in these calculations. By
adding the pressure field calculated by linearised theory due to the symmetrically waisted
body, the combined pressure distribution due to thickness on the wing-body combination was
then obtained . When compared with the isobar pattern on the corresponding infinite wing,
these combined results show a loss of isobar sweep over the forward part of the innerwing.
Attempts to straighten the isobars by a redesign of the body waisting led to inacceptable
body contours from both area rule and model making points of view. Since results available

from earlier tests had indioated that a gentle loss of isobar sweep in a region where the

flow is accelerating could be tolerated, it was decided not to modify the body waisting in

this way.

x) Research Engineer.
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For the corresponding lifting surface calculation the wingwarp distribution has been
designed for a given chordwise loading, invariant in the spanwise direction. This
approximately gives a straight isobar pattern due to lift on the inboard part of the wing.
On the outerwing, the isobar sweep increases towards the tip because of the planform shape
and hence the appearance of a tipshock at the design conditions is thereby avoided.
The streamwise loading taken for this three-dimensional wing warp calculation was derived
directly from the camber and incidence of the associated two-dimensional section at its
design condition of M - 0.688 and c - 2.150. This section had been designed by the Weber-
M1chemann method (ref.4) to give the just critical inviscid rooftop pressure distribution
shown by the curve labelled "non-linear theory" in fig.3a. Standard thin aerofoil thecry
was then applied to a slightly smoothed version of the camber line and the corresponding
linearised loading distribution thereby obtained. This was ammended by the infinite sweep
equivalence law and the resulting linearised streamwise loading used in the linearised
wing warp theory assuming full reflection at the body side. Thus for the chosen design
conditions of N - 1.20 and linearised c = 0.136, the desired wing warp shape was calculated.
However, on the finite wing, the two-dimensional non-linearised loading distribution
multiplied by cos2550 is expected to exist rather than this linearised loading if it is
assumed that the non-linear effects on the equivalent two-dimensional section and on the
finite wing are similar. Details of the resulting streamwise camber lines are given in
fig.2a.

The wing-body angle has been based on the experimental lift curve slope of a previous
model. With the wing at its design incidence, the body has been set at a positive angle of
2.50, so that the body upwash may help counteract the tendency for the measured load-
distribution at the wing-body junction of a wing-body combination in general to be lower
than the calculated loaddistribution. The wing twist distribution with the body axis in the
main stream direction is given on fig.2b. At this condition, the model is at its approximate
zero lift incidence at M - 1.20.

In order to estimate from the two-dimensional calculation what the final wing upper
surface pressure distribution will be, it is assumed that for the warped wing at the design
incidence, the differences between the pressure ooefficientsfor the infinite yawed wing and
for the actual finite wing are the same as those calculated for the symmetrical wing at
zero incidence. The lower surface pressure distributions are obtained from the upper
surface pressure distributions by subtraction of the calculated non-linear wing loading
distribution. The kinks in the theoretical pressure distrit tion on the inner wing are due
to the compression at the Mach-line emanating from the intersection of wing trailing edge
and body. The calculated wing pressure coefficients at the design conditions oCr. 2.50 and
11 1.20 are given on fig.4 &nd the corresponding wing loading distributions on fig.5.

3 Description of experiments.

To verify the applied deaign techniques, wind tunnel measurements have been made on
a model of the equivalent two-dimensional section and on a model of the wing-body
configuration. The presentation of the test results will be confined to the design
conditions.

On the two-dimensional model pressure measurements have been made in the 0.42 m x 0.55 m
pilottunnel of the NLR. The test section has closed side walls and slotted horizontal walls,
The measurements have been carried out with both free and fixed boundary layer transition.
Fixation of the transition has been realieed by means of a roughness strip from 16.7 % to
18.4 % of the chord. The Reynolds number, based on the 0.18 m chord, was 2.1 x 106 at the
design Mach number M - .688.

On the wing-body combination, measurements of forces, moments and surface pressures
have been carried oat in the transonic wind tunnel of the NLR. The 2.0 m x 1.6 m test section
has solid side walls and clotted horizontal walls. All model waves reflect downstream of the
modelbase for M : 1.15. The tests were done with both free and fixed boundary layer
transition. On the wing the transition was fixed by means of a roughness strip from 5 % to
10 % of the local ohord. % the design Mach number M - 1.20 the tests were carried out at a
Reynolds number 1.16 x 100, based on the aerodynamic mean chord.

The results of the two- and three-dimensional pressure measurements with transition
fixed have been corrected for the local influence of the roughness strip on the pressure
distribution, making use of the transition free pressure measurements.
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A Discussion of results.

4.1 Comparison of measured and calculated results on the equivalent twod.imensional section.

On fig.2a the target inviscid rooftop pressure distribution calculated from the Weber-
Kfchemann method is compared with the pressure distribution measured on the equivalent two-
dimensional section at the designconditions of - 2.150 and M - 0.688.

The agreement between theory and experiment is gooa except for a supercritical over-
expansion on the forward part of the uppersurface, which is not predicted by the non-linear
calculation method. In spite of the appearance of this supercritioal flow region, no shocks
appear to occur on the section upper surface. The calculated linearisedand non-linearised
loading distribution and the measured loading distribution are compared on fig.3b. On this
figure, the sep arate effects of non-linearity, compressibility (mainly on the forward part
of the seotion) and viscosity (mainly on the rearward part of the section) are clearly
visible.

More recently, better non-linear theoretical methods (ref.5 and 6) have become
available, whicb take into account viscosity as well as using improved compressibility
terms. Even though these methods are strictly only valid for subcritical flows, some
preliminary calculations made with them indicate that closer estimates can be obtained for
the measured superoritical region because in this case the flow remains shook-free.

4.2 Comparison of the measured and the cabulated results on the wing.

The pressure distributions on the wing, measured at the design conditions oc- 2.50

an M - 1.20 are given in fig.4, where they are compared with the calculated wing pressure
diatributions. In addition, a set of "expected" three-dimensional wing pressure
distributions deduced from the two-dimensional experimental results have also been shown.
To obtain these expected wing pressure distributions, the same pressure corrections with
regard to the linearised thickness pressures were applied to the two-dimensional
m e a s u r e d pressure distribution as had been applied previously in converting the
two-dimensional t h e o r e t i o a I pressure distribution to the three-dimensional
theoretical pressure distributions on the finite wing.

Before trying to interpret the pressure distributions on the wing, it is useful to
recall the assymptions inherent in the method used to design the wing and to examine their
consequences :
(a) the equivalence of the flow on an infinite yawed wing and the flow on an appropriate two-

dimensional section is assumed to be related by c . sec2 A and M . cos A , where A
is the angle of sweep of the infinite wing. This Pimplies that viscous effects, com-
pressibility effects and non-linear effects are assumed to behave similarly on the
equivalent two-dimensional section as on the corresponding infinite wing.

(b) the complex phenomenon of interaction effects between the waisted body and the thick
lifting wing has been assumed to be taken into account by treating the fuselage side
as a plane of reflection and by adding the linearised pressure field around the
isolated body to the separate pressure field due to wing thickness. This rather over-
simplifies the problem and as a consequence leads to only an approximate allowance
for the wing-body interference.

Now the differences between the calculated and expected three-dimensional pressure
distributions are directly relrted to the corresponding pressure differences between theory
and experiment in the two-dime.eional case. To eliminate these differences arising from
insufficiently accurate allowances for viscosity and compressibility effects in the two-
dimensional case, the comparison in the three-dimensional case will be confined to the
expected and the measured wing pressure distributions. Hence, any deviations between these
pressure distributions will then be due to
(a) limitations within the three-dimensional wing warp and pressure due to thickness

theories,
I the influence of the wing-body interaction,

the influence of three-dimensionality on the compressibility, non-linear and viscous
effects.

Though it is not always possible to attribute exactly the pressure deviations to each
of the above headings, something can be said of the general character of the pressure
deviations due to the above mentioned causes. For example, the wing-body influence generated
by the body, especially the waisted part, will be greatest near the root and will propagate
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along Mach lines in a direction determined by the local wing pressures. The influence oZ
three-dimensionality on the compressibility and non-linear effects will be noticeable
mainly on the forward part of the chord. Finally, the three-dimensional influence on the
viscous effects will be most marked over the rearward part of the wing, and is likely to
increase towards the tip. Differences arising from the limitations of the three-dimensional
wing warp and pressure due to thickness theories are more likely to exhibit global patterns
rather then the looalised trends suggested above, and can be checked directly against
measurement from the design calculation curves given in fig.4.

Inspection of the uppersurface pressure distributions (fig.4) shows that the super-
critical overexpansion also appears in the three-dimensional measurements, but when compared
with the expected wing pressure distribution. it is found to be concentrated nearer the
30 % position of the chord. The level of the measured minimum pressures increases slightly
towards the tip. At the tip the agreement of the measured pressure distribution with the
expected pressure distribution is unsatisfactory near the wing leading edge, but there is
some evidence that the theoretical supervelooities due to thickness calculated with the
basicly linearised theory method are too low, and this behaviour is also reflected in the
expected wing pressure distribution. On the forward part of the innerwing somewhat higher
pressures are measured than were expected. Near the wing-body Junction, the local
influence of the body upwash on the measured uppersurface pressure distribution is
noticeable at the wing leading edge.

On the wing lower surface, comparison of the measured and expected pressure
distributions shows larger deviations than on the upper surface. The deviations consist of
a compression towards the rear of the most inboard section and this moves forward over the
wing at stations further outboard. Undoubtly, the main part of these pressure deviations
is due to body interference.

Not unexpectedly, these pressure deviations are also apparent in the wing loading
distributions given on fig.5. When comparing the expected and measured wing loading
distributions, it is seen that over the rear of the wing chord, the influence of three-
dimensionality on the viscous effects gives a loss of loading towards the tip. This is
directly associated with the spanwise drift of the three-dimensional boundary layer as the
tip is approached.

The isobar pattern, corresponding to the measured wing uppersurface pressures at the
design conditions, has been given in fig.6. Except at the wingroot, where deviations due
to the thickness design were anticipated, the isobar pattern consists of almost straight
isobars. On the forward part of the wing, the result of the increase towards the tip of
the overexpansion on the direction of the isobars is noticeable. With regard to the shape
of the isobar pattern good aerodynamic properties may be expected. This is confirmed by the
results of the forces and moments tests. Sn fig.7 the experimental lift vs inoidcnce curve
is given. At the design incidence o( 2.5 , the measured liftcoefficient (c - 0.15) exceeds
the theoretical linear liftcoeffioient (0 a 0.136) by about 10 %. This is dhe to the over-
expansion on the wing uppersurfaoe and thk compression on the wing lower surface resulting
mainly from the fact that the body itself is inducing extra wing lift. Fig.7 also shows
the dragooefficient o vs Mach number curve for the measured liftocefficient at the design
incidence and it shoud be noted that there is only a gentle increase in drag after the
design Mach number has been reached.

Conclusions.

Comparison of the theoretical and experimental results on the wing shows differences
which are mainly caused by an overexpansion on the wing uppersurface and by a compression on
the wing lower surface. As a consequence the measured liftoceffioient exceeds the calculated
liftoceffinient by about 10 %. On the wing uppersurface the pressure deviations are almost
constant in the spanwise direction and this explains why the experimental uppersurface
isobar pattern has straight isobars except for a small region near the wingroot. The good
transonic properties of the combined RAE 101 thickness distribution and wing warp prevent
the supercritical overexpansion recompressing into an undesirable strong shock formation.
Thus in spite of small deviations between theory and experiment, the design aim of achieving
a wing-body configuration having favourable lift-drag characteristics at M - 1.20 has been
closely fulfilled.

To achieve closer agreement between theory and experiment for the wing pressures, it
is necessary to employ improved corrections for compressibility and viscous effects in the

non-iinear two-dimensional design. The revised calculation methods developed at NIR and NPL
(ref.5 and 6) go some way towards achieving this end.
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SUMMARY

The problem considered is that of the interference between a body, consisting of an
infinitely long circular cylinder aligned in the direction of motion, and a thin wing lying
approximately in the diametral plane of the cylinder.

Solutions according to linearised theory are discussed for three regions typified by:-

(1) large distances from the start of the interaction,

(2) the neighbourhood of the surface bounding the initial interaction region

and, (3) the neighbourhood of the root chord of the wing exclud6d from (2).

The structure of the solution is presented for regions (2) and (3) vhere existing theoretical
methods are inadequate.

Finally an illustration is given making use of the results obtained and a comparison is given
of some calculated results with some experimental measurements.
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I INTRODUCTION

We consider the flow of a compressible inviscid fluid, moving with uniform speed V and at
Mach number M (>I) when undisturbed, past a fixed body consisting of an infinite circular
cylinder of radius a whose generators are parallel to the undisturbed direction of motion of the
fluid and a thin wing lying in a diametral plane of the cylinder. This problem may be regarded as
the prototype of the wing-body interference problems even though an infinite cylinder is unreal-
istic. In practice the cylinder would have a nose but provided, it is not bluff, its effect on
the flow field near the wing is additive to the interference and can be regarded as known.

Ultimately the solution of interference problems will be achieved by fully numerical pro-
cedures, probably using the panel method and either linear or non-linear hyperbolic equations.
At present however these procedures have not been developed and a significant amount of analysis
is required to prepare the ground for arr numerical work that is done. It is believed that such
analysis is of some permanent value in that it leads to a fuller understanding of the flow and
can guide the computation in particular cases.

Without any loss of generality we can take M = 12 and suppose that c (<<1) is a
characteristic measure of the flow deflection caused by the body. We also define an orthogonal
set of Cartesian coordinates Oxyz where 0 is a convenient point on the axis of the cylinder,
Ox points downstream along this axis and Oy is in the plane of the wing. Then since the flow
is irrotational we can write q = grad o, 0 = V(x+ co) where q is the fluid velocity,
is the velocity potential and,-on neglecting squares of a, the e~uation satisfied by 0 is

2 a2 20 (1.1)
+2 az

2  ax
2

The boundary conditions satisfied by 0, are that 21 is prescribed on that part of the plane

z = 0 occupied by the wing, 0 is continuous on the remainder of the plane z o outside the
cylinder being zero upstream of the Mach lines drawn downstream from the edge of the wing and

0 when r = a (1.2)

where y = r cos , z = r sinO . (1.3)

Our aim in this paper is to discuss the present state of the problem posed by (1.1)-(1.3)
restricting ourselves to the exact theory of the detailed flow structure and excluding considera-
tion of overall properties and of approximate results. The choice is made purely in view of the
limited time available and in no way reflects our opinion of the relative importance of these
other aspects. The exact theory may be divided into three parts - first, the asymptotic structure
for x large; second, the neighbourhood of S the initial surface bounding the interaction
region but excluding the neighbourhood of the root chord of the wing; and third the region near
S excluded in the second part. We shall discuss these in turn.

2 THE VELOCITY FIELD FOR LARGE x

The method and principal results here are due to Nielsen (1951, 1957). We restrict atten-
tion in this section to wings symmetrically disposed to the oncoming stream or, if not, to wings
with supersonic loading edges. The significance of this restriction is that it is necessary for
the success of the method that 0 is prescribed at all points of the plane z = 0 satisfying

Iyj > a . That being so we can take the Laplace transform of 0 with respet to x, using a
as parameter and denoting the result by *; a differential equation for 4 is obtained with
boundary conditions that can be solved, formally very simply. Suppose for example that the wings
approximately occupy that part of the plane z = 0 dnfined by lyj > a, x > 0 and are at
incidence c so that the boundary condition on this plane reduces

-1 x>o, jyj >a

0 x<o, lyj >a (2.1)
as
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Then s satisfies

la 2 a 2 =  2

'together with

0, r a, A -2 onzo, lyl •a (2.2)

The formal solution of (2.2) is

K(sr)

An z 2jzj n a2 + sin flO K- a(2-3)

n1=0

where Kn  is the Bessel function of order n, of the second kind and with imaginary argument,

and where A are constants determined byn

sin 0 o-salsin e[ = An sin nO (2.4)

n=O

What remains to be done to determine 0b is then the inversion of (2.3) which can be written down
as a series of integrals involving W functions, defined by

00e' Z ( ) d . /2 + e S(r-a) Kn(sr)

0

extensive tables, but necessarily incomplete, of these functions have been prepared by
Mersman (1954) and Nielsen (1957). Using these tables a number of workers Le.g. Randall (1965),
Chan and Sheppard (1965)] have successfully computed pressure distributions on the body and, to
some extent, on the wings. The most important region where the computation fails is the
neighbourhood of S the surface separating the domain where the interference is identically
zero from where it is not zero. The precise form of S in z > 0, y > 0 is

x . + a 2ra cos 0 if y > a

(2.6)

X = s O- acs + - if <y < a

The reason is that this neighbourhood corresponds to sa large in (2.3) when the series is only
slowly convergent. The elucidation of the flow near S therefore is equivalent to an elucida-
tion of the properties of when sa >> i. Before looking at this aspect however we note that
Nielsen's approach cannot deal with lifting wings having subsonic edges and such interactions
can at present only be dealt with in the limit case of slender wings.

3 THE NEIGHBOUJOOD OF S

The structure of 0 when sa >> I can be determined in two ways. Either we can develop
methods for summing (2.3) directly or we can revert to the basic equation (2.2) and investigate
the simplifications that appear when sa >> i. Both methods are succesful; indeed the first
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has a long history in the closely related field of short wave diffraction. The second method
which is newer, while lacking somewhat in rigour, does have the advantage of being immediately
applicable to arbitrary convex cylindricalbodies. The essential results are also easier to
obtain and we shall concentrate on it here. For an account of the alternative approach the
reader is referred to Jones (1964), who in another paper (Jones 1967) gives an alternative
account of the second approach to the determination of the solution near S.

We now consider the structure of S near [but as we shall see later, not too near] r = a,
o = o, concentrating on wings without sweep and restricting attention to the region z > 0.
Define V by

= T.e-  '(y, z) (3.1)

so that outside the interaction region V 1. Then in virtue of (2.2) T satisfies

2 1 V~ 2 V cs al2 i ay 1 a2 7 s odcs e a7] 1 32
+r2 7  1+ 2s in 0 H+ 0r32
22 r 2 . 0r r Nei (.2

together with the boundary conditions

s asW - s= Or, r > a (3.3a)
r 8

_sT sin 0 0 r = a, 6 > 0 (3.3b)ar

V I as r -oo (3.3c)

So far no app ximations have been made to (2.2) but now we take advantage of the fact that

sa >> 1. Two regions near 0 0 0, r = a can be distinguished. The first is when e - (sa) -

(r- a) - s- I  and here, although (3.2) simplifies, the best treatment is by cone-field theory
and we shall postpone its consideration until the next sectior. The second region is characterised

by (r- a) - s-2/3 al/3, e - (sa) "I/3. In order to discuss it we write

R a (s)2/3 e e(sa) 1/3  ()

and after expressing 7 as a function of R, 6 we let sa -oo when (3.2), (3.3) reduce to

a2 26y- 2a = 0
2R 8R 86aR2

(R,O) = , Y when R = , (,e) =1 (3.5)

The relative errors in (3.5) are all 0(sa)"2/3. The simpler problem posed by (3.5) can be
solved exactly. For details the reader is referred to Stewartson (1966); the solution is
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031 [113 2-113

e exp [R- 93 n fAi(p) dp (3.6)6 12
K=i -K

n

where Ai is ths Airy function and -K are the successive zeros of Ai'(x).

n
Having obtained this solution valid in a certain domain fairly near the intersection of S

and the root chord of the wing the formal extension to the remainder of S turns out, after some
rather complicated argument, to be straightforward. In the rO,x space the intersection of S

with the cylinder is known to be the curve r = a, x = ae for 0 < 0 <_- [if e > IS is
2 2

determined by the other half of the wing approximately lying in z 0 0, y < -a] . Hence for

0 < c•, < must be dominated by a factor exp(-asO) when 0 1 and r - a. We find in
2 -2fact that replacing the exponential factor outside the summation sign in (3.6) by s exp(-as 0)

is sufficient to give near r = a for 0 < 0 <2. On inverting we find that near S and

r a

~ aA O 9/ 4 ep e I  x > a0

provided 0 < 0 <7 , where A is a known constant.

The structure of 0 at points of S not near r = a can also be worked out but the
results are rather complicated and are not reproduced here. A full discussion of its properties
may be found in the paper already quoted. The behaviour of ( at points well downstream of S
and neither on the body nor the wings can obviously be found from Nielsen's series taking
advantage of the comparative smallness of the relevant values of as. Further, although it has
not been explicitly demonstrated, it is likely that these two expansions cover a sufficiently
large portion of the flow field for practical purposes. Certainly this appears to be so in the
related problem of the diffraction of sound pulses by a cylinder.

Unfortunately the one part of the flow field excluded by these analysis, namely the
immediate neighbourhood of the leading edge of the root chord of the wing, is of particular
importance in practice and so it is necessary to develop a third procedure to handle it. Before
doing so however we observe that, as with Nielsen's method, the discussion of the solution near
S depends on the wings having supersonic leading edges or being symmetrically disposed to the
undisturbed stream. Although it has not been investigated the extension to subsonic leading
edges does not seem impossible, but it will probably be necessary to work in the x,y,z plane
rather than use Laplace transform methods.

4 THE LEADIM EDGE OF THE ROOT CHORD

Defining the wings, as before, by z = 0, x 0 0, jyl > a and the cylinder by

y2 + z Z a2 the -egion we are interested in is the neighbourhood of (O,a,O) and specifically

when x <<i. From continuity 4 vanishes when x = z = 0, y = a and the value of at
a ax

follows by Bagley's argument (1961). The idea here is to note that the cylinder is normal to
the wing on the root chord and hence to a first approximation it may be replaced by an infinite

plane. Thus the value of ! at the leading edge is the same as if the Wing wer6 continued
ax

through the cylinder by its reflection in the infinite plane and the cylinder then removed. For

the unswept wing defined above it follows that a at x = 0 is the same whether the cylinder
ax h l

is there or not. For swept wings the equivalent problem is to determine x at the apex of a

delta wing, the solution of which is well-known.

In order to make a convincing join (graphically speaking] with the asymptotic solution

when x >> I on the root chord it is however necessary, at least, to know the value of
2 a
a:; as x + 0 and this is a more formidable problem. Not, it should be emphasised, because

of the difficulty of formulation, but rather the amount of manipulation and computation which
seems at first sight to be necessary. The line of approach is as follows:
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(a) The wing is extended by its mirror image and the cylinder neglected. An expression
is derived for the velocity potential I at a general point of space. It is used to compute

o-_ n r = a, which, to first order is equal to the value of

2 2
when (y-a) - - . After neglecting all terms O(x2 ) we denote the resulting form for (4.1)

by

x F( ) where - (4.2)

(b) A new solution 02 of the potential equation is constructed to cancel the value of

ar n r a given by (4.2). To order x2  in c it is sufficient that this be done on the

plane y a, i.e. we replace the cylinder by this plane and require

x F(,z) on y a (43)

The determination of 02 is a standard problem and solved by mean of a distribution of sources

of density -xF(-r) on y = a.

(c) The final step is to cancel the downwash produced by 02 on the wing without

introducing a normal velocity component on the cylinder, at least to order x. If the downwash

produced by 02 on the wing

2-x G('l) + O(x2 (4.4-)

where = , the new potential 03 is chosen to satisfy

x (4.5)

on the wing and on its mirror image in the tangent plane to the cylinder at the root chord. The

error in the normal velocity at the cylinder induced by 03is O(x2 ) and negligible.

2
If he ingis nsepttevale o a t the leading edge of the root chord was first

ax

found by Nielsen (1951). He showed that if 0 satisfies the boundary conditions (2.2), then as
y - a+, z - 0+

x2

If the wing is swept there are two complications. The first concerns the determination of
at points near the plane y = a. For wings with supersonic edges (i.e. the leading edge is

given by y a a + mx, m > I) it is best to work with the Laplace transform of 0'i.e.
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0dw explia v-a) z z

= f 2)1/2 (S2+ , z >0 (147)

which satisfies (2.2). On the other hand if the wing has a subsonic leading edge (m < I) and
is lifting, as implied by'(2.2), the two sides of the wing (z = 0±) are not independent and
the corresponding form for is

m2 f e pliw(y-a)-z , . 2(48
'9- - (s2+ w2 m2)3/2

where E is the complete elliptic integral of the second kind, with modulus T although the
Laplace transform is really no further help in these cases. It is noted that if the wing is
symmetric about z = 0 there is no need to differentiate in this way between m < I and m > 1.

The second complication arises in the determination of 43 when m < i. This is formally

a standard problem in generalised cone-field theory about which there is an extensive literature.
However it was found that the primitive method of source distributions gave the necessary results
in the easiest way. As a-preliminary we first find a 0 such that

-:H(,) (4.9)

on the delta wing and then integrate the solution from x = 0 with respect to x. For a suitable
choice of H and provided we add a simple standard solution of the potential equation this

Opoeuegives 0 3 and completes the determination ax at y=a+, z = 0+, x = O. The

reader is referred to Stewartson (1968) for further details of the argument: considerable
numerical work is needed to determine

B -2aLtA 2  
asx-0+,y a+, z 0+

ax
2

and the results are set out in the table below

m B m B

0.1061 0.966 0.0551
3.864 0.0861 0.866 0.0508

2.000 0'0732 0.707 0'0435

1.414 o.o656 0.500 00316
1.155 0.0606 0.259 0.0133

1.035 0.0577 0 0

1 0.0567

Many questions remain of course and most of them will need extensive computing to answer.
It world be usefLl however if an analytic means of joining the solution near the leading edge of
the root chord, given in section 4, with the solution for the remainder of the neighbourhood of
S given in section 3. Ono wonders whether it will also be possible to extend Nielsen's
asymptotic theory to lifting wings with subsonic edges and how it fits in with slender body and
not-ao slender body thenry. Little progress in these directions has unfortunately been made up
to now.
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5 ILLUSTRATION OF THE APPLICATION OF THEORY AND A COMPARISON WITH EXPERIMENT

As referred to earlier in the paper, the formal solution of the wing-body interference
problem was set down by Nielsen in 1951. His method was to reduce the problem to that of
numerical calculation of the sum of an infinite series of certain convolution integrals in
order to find the pressure ,t any point in the field of the interaction. The convolution
integrals involve 'W' fu ctions, which have now been fairly extensively tabulated by
Mersman (1954), and also the coefficients of the Fourier series representing the normal
velocities induced at the body boundary by the velocity potential of the wing, (together with
its arbitrary extension within the body) which must be cancelled by those of the interference
potential.

In any practical calculation using an electronic computer, the 'W' functions may be
stored as a table or, perhaps more conveniently, generated by use of the approximate functions
suggested by Luke (1964). The evaluation of the Fourier coefficients is, however, a somewhat
tedious task except in rather speciLl cases where they can be determined analytically, e.g.
for a wing of simple wedge section. An alternative technique which obviates the need to
calculate these coefficients is possible for the symmetrical problem when the wing has straight
spanwise generators, since it is possible to solve the problem by a simple superposition of the

solution for wings of wedge section. Fig.i illustrates how an arbitrary section may be built
up of elementary wedge wings, QRST, for which the solution is known. Such a solution was given
by Randall (1965).

For the superposition it is convenient to define an 'influence' function F(F./Pa), which
is the difference between the pressure coefficient at any point on the wedge wing-body combina-
tion and that at the corresponding point, assuming the body side to act as a reflection plane,
(i.e. that for the net wing).

F(x/pa) is thus defined as

F~/a C xIC/ ne (51)

L 7p\~j wing-body L Pa)/ net wing
combination

where a = body radius
6 =we angle

and, in general, is a function of the sweep angle A.

By superposition, we have for the wing-body junction, for example,

dz wj /x + x F xa - aL (5.2)AC g-. I d P- )

0

or

x d
I w F, d since F(O) = 0

0

where aC P is the increment to be added to the pressure coefficient for the net wing, and the

wing section is defined by 2w = zw(g).

Use is made of the foregoing analysis to evaluate the required forms of F( ) for small

values of the argument which gives 
7" /

(m <1)
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for a subsonic sweep angle, and

b m I'm 2 4) (m 2 >m)PF + i- C -Pa -P-am

for a supersonic sweep angle; where m = cot A.

Fig.2 illustrates the pressure distribution at the junction of a body and a 55 degree
swept wing at zero inc'idence and a Mach number of 1.2. The calculated results can be compared
with those for the neu wing. The influence of the opposite wing panel on the junction pressures
is readily apparent. The figure also gives some experimental measurements made in the R.A.E.
8ft x 6ft Transonic Wind Tunnel on the model illustrated and these are seen to be in fair agree-
ment with the calculated values.
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EXPERIMENTAL INVESTIGATION OF WING-BODY INTERFERENCES

IN THE MACH NUMBER RANGE FROM 0. 5 TO 2. 0
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SUMMARY

In order to investigate the effects of interference on wing-body combinations, three-component

measurements were performed in the Transonic Wind Tunnel of the Aerodynamische Versuchs-

anstalt G~ttingen n the Mach number range from 0. 5 to 2. 0. Three basic wings, a rectangular

wing, a sweptback wing, and a delta wing with aspect ratio A between 2. 3 and 2.75 were

investigated alone and in combinations %ith two pointed cylindrical bodies of different length and

diameter. For these wing-body combinations the interference effects in lift, pitching moment,

wave drag, and shift of the aerodynamic center due to interferences were determined.

RESUME

Afin de rechercher 1' interaction aerodynamique entre I' aile et le fuselage des measures de force

ont et4 eff~ctuees avec des ailes, avec des fAselages et avec differentes combinaisons d' ailes et

de fuselages dans le regime du nombre de Mach de Ma a 0, 5 a Ma 0 2, 0. Ces measures ont 6t6

execut es dans la souff erie transonique de Aerodynamische Versuchsanstalt Gtttingen. On n' a

rechorche quo trois ailes do geometrie fondamentale . une aile rectangulaire, une aile en fleche

et une aile deltad' un allongement g~om~trique entre 2, 3 et 2, 75. Ces ailes ont t combines

avec deux differents fuselages. Avec les differentes combinaisons on a recherche les effects

d'interaction aerodynamiques sur la portance, sur le moment de tangage, sur la trainee due aux

ondes de choc, sur les gradients de la portance et du moment de tangage et sur le de'placement

du centre de poussee.



NOTATION

A wing aspect ratio, A a b2 /S

a. c. aerodynamic center of the wing

b wing span

c (y) local wing chord

+S
mean aerodynamic chord, " u -- f c2 (y) dy

-s

cD drag coefficient based on total wing plan-form area for wings and combinations

cL lift coefficient based on total wing plan-form area for wings and combinations
and on base area for bodies

c M  pitching moment coefficient about quarter-chord point of mean aerodynamic
chord for wings and combinations, based on total wing plan-form area and

mean aerodynamic chord for wings and combinations

cr root chord of wing

c t  tip chord of wing

d body diameter

dcL lift-curve slope, per radian

dcM

dcM pitching-moment-curve slope, per radian

dcr

D drag

L lift

M pitching moment

Ma Mach number

MRC moment reference center

p local static pressure
1 V2

q free-stream dynamic pressure, qo 2 2 %c Vo

qcp local quarter-chord point

QCP quarter-chord point of mean aerodynamic chord
V

Re Reynolds number, Re =

s wing semi span

S wing plan-form area

V free-stream velocitya)

x longitudinal coordinate, measured along body axis from body nose for body
alone, or measured along wing root chord from wing apex for wings and
combinations, positive downstream

Ax distance of the aerodynamic center from MRC, positive downstream,
ac x dcyl

ac \dcL C 0

x (y)qcp distance of qcp from wing apex

xQC P  distance of QCP from wing apex, xQCP J x(y) c (y) dy

-S



y lateral coordinate

aangle of attack

taper ratio, X ct/Cr

A sweep angle of wing leading edge

Vkinematic viscosity of air

density of air

Subscripts

B body alone

INT interference

W wing alone

WB wing-body combination

00 free-stream ftow
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EXPERIMENTAL INVESTIGATION OF WING-BODY INTERFERENCES

IN THE MACH NUMBER RANGE FROM 0.5 TO 2.0

W. Schneider

1. INTRODUCTION

The purpose of this investigation is an experimental contribution to aerodynamics of wing-body
interferences -In the subsonic, transonic, and supersonic speed range. For incompressible flow
the wing-body problem is discussed in some detail in Ref. [1] and [2], whereas at transonic
and supersonic speeds systematic experimental investigations are scarce. Available publications
are presenting mostly very special wing-body combinations, concerned with practical problems,
ebpecially the drag reduction. In this paper, in the first place the effect on lift, pitching moment,
and the shift of the aerodynamic center due to interferences has been investigated. With regard
to the basic character of these investigations, three wings of simple plan-form were chosen, a
rectangular wing, a sweptback, and a delta wing. These wings were combined with two pointed
cylindrical bodies of different diameter in order to investigate the influence of body thickness.
With the chosen magnitude of aspect ratios the results may be also of some interest for modern
aerodynamic applications.

2. TEST FACILITIES

2
The tests were performed in the 1 x 1 m Transonic Wind Tunnel of the Aerodynamische Ver-
suchsanstalt G6ttingen, which has been described in Ref. [3]. This closed circuit continuously
operating wind tunnel is equipped with a flexible-plate Laval nozzle for tests at supersonic speeds
(Mach number from 1.25 to 2.25), and an adjacent section with four perforated walls for tests
at subsonic and transonic speeds (Mach number from 0. 4 to 1. 2). A Reynolds number variation
is achieved by changing the stagnation pressure in the tunnel from 1/10 of an atmosphere to
approximately 2 atmospheres. The tunnel is equipped with strain-gauge balances for measuring
aerodynamic forces on sting-supported models. Data are recorded by a system of de - amplifiers
and digital voltmeters. The measurinj range of the data handling system lies between 10- 2 and
10+ 3 volts; the accuracy is +3 . 10 ' of the measuring range.

3. MODELS

The f.lngs (Fig. 1) used for these investigations - a rectangular wing, a sweptback wing, and a
delta wing - belong to a series of wings, which was tested already in some detail in Ref. [4] and
[5]. All wings had the same plan-form area of S a 327 cm 2 and the same symmetrical profile
NACA 65 A 005. For the wing-body combinations a second set of wings was manufactured in
connexion with cylindrical bodies of d a 60 mm diameter. The bodies (Fi ) composed of a
parabolic nose and a cylindrical afterbody, had fineness ratios of 10. 0 and 12.0. The ratios of
wing span to body diameter were 3. 3 and 5. 0. The wings were fixed to the bodies (Fig. 2) in
such a way, that the quarter-chord points of the mean aerodynamic chords had the same distance
from body apex for all combinations. The wings were located inside the Mach cones originating
from body apex, so that disturbances from body nose could not reach the wings at supersonic
speeds. The pitching moment reference point was the quarter-chord point of mean aerodynamic
chord. For the investigation of the Influence of body thickness, the cylindrical part was thickened
by two shells up to d a 90 mm. For a body diameter of d a 60 mm the wing-body model had a
blockage of 0. 30/o of the test cross-section, and for d - 90 mm a blockage of 0. 70/o. This
means that the size of the models was in an appropriate relation to the test section of the tunnel.
The models were manufactured at the A'.., all wings were made of hardened toot steel and were
finished by grinding, the other parts were made of duraluminum.
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4. TEST PROGRAM

The tests comprised three-component force measurements - lift, pitching moment, and drag -
of wings, bodies, and wing-body combinations (Fig. 2) at the following Mach numbers, Ma n 0. 50;
0.70; 0. 80; 0.85; 0.90; 0.95; 1.00; 1.05; 1.10; 3.15; 1.52 and 1.97. Nominal angle of
attack range was a= - 50 to +150. For the rectangular wing and its combinations It was not
possible to keep this angle of attack range at all Mach numbers because of strong model vibrations.
Near zero-incidence relatively large shifts of the center of pressure oc.urred on some models,
caused by boundary layer effects. Thus it was necessary to repeat some tests in this incidence
range (@ a - 50 to +50) with boundary layer transition fixed. This was done by carborundum strips,
3 mm wide and 0. 03 mm high, fixed on the upper and lower surface of the wing at 150/o chord
position and on the bodies by the.same strips at 15 °/o of the length of the nose.

For all tests the tunnet was running at a stagnation pressure of 1 atmosphere and a stagnation
temperature of 500 C. Reynolds number per cm was 9 • 104 < Re < 1.4 . 105. The permitted
deviation from nominal Mach numbers was AMa +0. 005. Angle of attack could be adjusted with
an accuracy of Aa w +0.050.

5. RESULTS

5. 1 Experimental Results

From the three-component measurements the aerodynamic coefficients, the slopes of the lift and
pitching moment curve, and the aerodynamic center positions were evaluated. Reference magnitudes
for the coefficients of wings and wing-body combinations are wing plan-form area and mean
aerodynamic chord as given in Table 1.

F shows the lift-curve slopes, Fig. 4 the aerodynamic center positions versus Mach number
of wings and wing-body combinations.

Wing-body interferences are defined as the differences between the aerodynamic coefficients or
their derivatives of the wing-body combination and the sum of the same coefficients or derivatives
of wing and body alone.

The interference effects on the wing-body combinations are defined by the following formulae

a) Total lift-interference ratio

cL INT cL WB i
cL + c, [c + cLBa(

LW CLB jL LB a const

see Fig. 5 to Fig. 7

b) Interference in pitching moment

CM CrMw - (CMw +M c 1 2
CMINT LWB 'W + VIB a const

see Fig. 8 to Fig. 10

c) Wave drag interference ratio

ACDINT AcDwB 1 (3)

TcJ+cAc +Ac -
Dw D D D) aH

W B B  a 0

seeFi.1
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d) Lift-curve slope interference ratio

dcL) (dc1)
dc INT [ d' WB (4)

(dLW+dc dcLlW dcL\
do dcL [B d do .B 0

see Fig. 12

e) Interference in pitching moment curve slope

(dML dcM dc M dc (5)
'INT de E d J 0

see Fig. 13

f) Shift of aerodynamic center position due to interferences

ac M B B
C_)INT deL /WB d (cLw + CLB J cL 0

see Fig. 14

A representation of pitching moment interference ratio was not possible, because the pitching
moments of wing and body were nearly of the same amount but of different sign at some Mach
numbers.

5. 2 Theoretical Results

To give an impression of the agreement with theoretical data, a few theoretical points, which
could be computed without much computational effort, are shown in the diagrams. The computations
were limited to lift-curve slopes and aerodynamic center positions of the wing-body combinations.
For the rectangular and delta wing-body combinations the computation is based on a theory of
PITTS, NIELSEN, and KAATTARI, Ref, [7]. For the sweptback wing at subsonic speeds the
method of HAFER, Ref. [6], and at supersonic speeds the method of FERRARI, Ref. [8], were
used. In applying the latter method to a sweptback trailing edge configuration, the wing was
represented by superposition of two wings with unswept trailing edges.

6. DISCUSSION OF RESULTS

6.1 Lift-Curve Slopes (Fig. 3)

a) Rectangular wing

At subsonic speeds there is no essential difference between the lift-curve slope of the wing alone
and that of the wing-body combination. For Ma < 0. 8 the lift-curve slope of the wing is lying
below those of the wing-body combinations. On the other hand at supersonic speeds the lift-curve
slopes of the wing-body combinations become considerably larger than those of the wing alone.
This increase In lift at supersonic speeds, as compared with that at incompressible flow, can be
explained by a different loading distribution, induced by the wing on tht body. At supersonic speeds
the part of the body In front of the wing can not be influenced by the wing; on the other hand the part
of the body downstream of the wing is strongly influenced. The contribution of the induced loading
on this part of the body can be essential for the increase in lift. A comparison of experimental with
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theoretical values shows that the agreement is good at supersonic speeds; at subsonic speeds lift-
curve slopes are somewhat overestimated by theory. The effect of a fixed boundary layer transition
on lift is Insignificant for the configurations of the rectangular wing.

b) Sweptback wing

For the sweptback wing the lift-curve slopes of the wing-body combinations are considerably
greater at subsonic and supersonic speeds than those of the wing alone. For this particular wing
the interferences are large through the whole Mach number range. Theoretical values only show
the tendency of the experimental curve, but the agreement is unsatisfactory at all speeds. The
effects of a fixed boundary layer transition are more pronounced than on the rectangular wing.
Differences are marked at subsonic speeds and near the speed of sound.

c) Delta wing

Lift-curve slopes of the delta wing and the wing-body combinations do not differ mch in the tested
Mach number range. Except for Ma a 2, where the leading edge of the wing becomes a supersonic
edge, the lift-curve slope of the combination is higher than that of the wing alone. The agreement
of theory with experiment is good at subsonic speeds, but at supersonic speeds theory overestimates
lift. The effect of a fixed transition is negligible.

6.2 Aerodynamic Center (Fig. 4)

a) Rectangular wing

The curves of the aerodynamic center positions are similar for both wing-body combinations. The
influence of the body on the shift of aerodynamic center is significant for these configurations. For
the W1 B1 combination it amounts to nearly 150/o of the mean aerodynamic chord and nearly to
400/o for the W1 B2 combination.

As it was mentioned already, considerable movements of the center of pressure occurred on the
configurations at subsonic speeds. Such movements of the center of pressure are caused in the
first place by boundary layer effects (separations) and are strongly dependent on Reynolds number.
In wind tunnel testing it is usually not possible to reproduce the Reynolds number of a normal type
of airplane. Experimental results with a fixed boundary layer transition therefore correspond more
to real flow conditions. For comparison, the theoretical aerodynamic center positions were plotted
in this diagram; the agreement with experiment is unsatisfactory especially at transonic speeds.

b) Sweptback wing

For the sweptback wing the shift of the aerodynamic center due to the body is smaller than for the
configurations of the rectangular wing; for the W2 B, combination it does not exceed 8 0/o of mean
aerodynamic chord, and 25°/o for the W2 B combinations. Differences between aerodynamic
center positions with and without fixed transition are nearly twice as high as for the configurations
of the rectangular wing. In the lift boundary layer effects were already noticable. With increasing
sweep of the wing those effects become more marked with respect to the pitching moment behaviour,
and the aerodynamic center position is strongly dependent on such effects. Theoretical and experi-
mental values are in a fair agreement.

c) Delta wing

The curves of the aerodynamic center position of delta wing configurations are similar to those of
the sweptback wing configurations. The amounts of shift of the aerodynamic centers lie between
those of the rectangular and the sweptback wing configurations. On a delta wing, flow separates at
the leading edge; the boundary layer of the reattached flow on the wing' s upper side is largely
turbulent. Boundary layer trips are, therefore, ineffective on such wings, which is shown by
experiment. A peculiar feature of the aerodynamic center positikn of thes .ombinations is its
downstream shift at relatively low Mach numbers (Ma < 0. 7) and its upstream shift at supersonic
speeds with increasing Mach number and body diameter. Comparison of theoretical with experimen-
tal values shows good agreement.
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6. 3 Lift Interference Ratios

a) Rectangular wing (Fig. 5)

Near the spted of sotnd the experimental points of both wing-body combinations sc3tter Increasingly
with increasing angle of attack. At higher angles of attack the beginning of the scatter is displaced
slightly to lower Mach numbers. This can be explained by the fact that the speed of sound is attained
locally on the model at higher incidence, which evidently is connected with a change of lift
distribution. The interference curves are similar for both wing-body combinations. At supersonic
speeds interference ratios increase with Mach number up to an angle of attack of nearly a a 80.
The lift of the wing-body combination is larger in this range than the sum of lift of wing and body
atone.

b) Sweptback wing (Fig. 6)

The course of lift interference ratio curves is largely similar to those of the configurations of the
rectangular wing. However the amounts are larger. Thus, for angles of attack of a > 30, the lift
of the wing-body combination is less than the sum of lifts of wing and body alone. These losses in
lift attain their highest values near Ma a 1.5.

c) Delta wing (Fig. 7)

For the delta wing in combination with body 2 (W3 B 2 ) the mean losses in lift are about 1 00/0
higher than for the combination with body 1 (W3  1) . These losses in lift are nearly constant for
the W3 B1 combination in the range 1. 2 '< Ma < 1. 8, they begin only to decrease near Mn a 2. 0.
Considering in conclusion the behaviour in lift interference of the combinations of tile three wings,
it can be seen that the combinations of the rectangular wing show the smallest losses in lift as
compared with the sum of lift of wing and body alone.

6.4 Interference in Pitching Moment

a) Rectangular wing (Fig. 8)

For both wing-body combinations the interference moment is positive in the tested range of incidence
up to Ma = 1.5. In the transonic speed range scatter of the experimental data occurs, similar to
the scatter of the lift data. Above Ma a 1.5 the interference moment changes its sign and tends to
higher negative values with increasing Mach number. This tendency to negative values becomes
stronger with increasing body diameter.

b) Sweptback wing (Fig. 9)

Here the interference-moment is of negative sign in the tested Mach number and incidence range.
Tendency to higher negative values at supersonic speeds with Mach number is not so marked as for
the configurations of the rectangular wing, but the negative interference moment becomes larger
with increasing incidence.

c) Delta wing (Fig. 10)

Moment interference curves of the delta wing-body combinations are similar to those of sweptback
wing configurations; also the values of the interference-moment agree largely. A comparison of the
interferences in pitching momnt of the configurations of the three wings shows a similar behaviour
of the combinations of the delta and the sweptback wing. The interference-moment is of negative
sign in the tested Mach number- and incidence range; for the configurations of the rectangular wing
negative values occur only above Ma 1.5.
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6.5 Interferences in Wave Drag (Fig. 11)

A comparison of the wave drag interference of the tested wing-body combinations definitely shows
the more favourable behaviour of the configurations of the delta wing to those of the rectangular
and the sweptback wing. As expected, the combinations of the rectangular wing have the highest
wave drag, which is only 20 0/o to 25°/o less on the average than the sum of drag of wing and
body alone. For the combinations of the sweptback wing this reduction in drag is nearly 35 0/o to
400/o. Influence of body diameter is insignificant, except for the sweptback wing.

6. 6 Lift-Curve Slope Interference Ratios (Fig. 12)

a) Rectangular wing

The lift-curve slopes interference ratios are different for the two wing-body combinations. Near
Mach number Ma a 0. 9 the curves of both configurations show a distinct minimum, which is
reduced with increasing Mach number. For Ma > 1. 2 the amount of the lift-curve slopes of the
combinations exceed the sum of amounts of wing and body alone, which is caused by additional
body lift on the combination at supersonic speeds. With increasing body diameter the interference
ratio of lift-curve slope is strongly reduced at subsonic and transonic speeds but increased at
supersonic speeds. Test results with and without fixed transition differ only at subsonic speeds.
Agreement of theory with experiment can be considered satisfactory.

b) Sweptback wing

In contrast to the rectangular wing, the configurations of the sweptback wing do not show the
distinct minimum of lift-curve slope interference ratio near Ma a 0. 9. Disregarding the scatter
of interferences at transonic speeds, the curves indicate, that the differences between the inter-
ference ratios of the combinations become smaller with increasing Mach number.and nearly
disappear at Ma a 1.5. Experimental values with and-without fixed transition differ strongly at
subsonic speeds. The agreement of theoretical with experimental values is unsatisfactory for these
wing-body combinations.

c) Delta wing

In the tested Mach number range the lift-curve slope for the W3 B1 combination is only somewhat
smaller than the sum of lift-curve slopes of wing and body alone. With increasing body diameter
the lift-curve slope of the wing-body combination decreases, similar as for the combinations of the
other wings. Interference ratios are of negative sign at all Mach numbers; the greatest negative
values were measured near the speed of sound. At supersonic speeds losses in lift-curve slope
become smaller with increasing Mach number, the differences between the interference ratios of
the two combinations become smaller too. Theory and experiment agree satisfactorily at subsonic
speeds, but at supersonic speeds discrepancies appear.

6. 7 Moment Curve Slope Interferences (Fig. 13)

a) Rectangular wing

For the configurations of the rectangular wing interferences in pitching moment curve slope differ
not much. After a slight ascent of interferences with Mach number at subsonic speeds a sudden
increase occurs at Ma - 0. 9. At the speed of sound interferences reach a maximum and drop off
at supersonic speeds. Near Ma a 1. 2 interferences disappear, for Ma >1.2 they become negative.
The presentation definitely shows the destabilizing effect of the interference moment of the
configurations near zero incidence at transonic speeds and a stabilizing effect with increasing Mach
number at supersonic speeds.

b) Sweptback wing

In the tested Mach number range pitching moment curve slope interferences are of negative sign
for both combinations of the sweptback wing; the amount of interferences increases with body
diameter. At supersonic speeds these interferences tend to higher negative values above Ma 1. 5.
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Interferences in pitching moment near zero incidence are strongly dependent on Mach number for
the combinations of this wing.

c) Delta wing

The izterlerence moment near zero incidence has negative valui, for these configurations in the
whole Mach number range; at supersonic speeds the amount is increasing with Mach number.

A comparison of pitching moment curve slope interferences between the combinations of the wings
in the tested Mach number range shows interferences of negative sign on the combinations of the
sweptback and the delta wing, which are increasing at supersonic speeds with Mach number and
body diameter. On the combinations of the rectangular wing, negative interferences occur only at
superscnic speeds, near the speed of sound the interference moment becomes strongly positive.

6.8 Shift of Aerodynamic Center Positions Due to Interferences (Fig. 14)

a) Rectangular wing

Comparing the diagram of the shift of aerodynamic center positions due to interferences with
interferences in pitching moment, it can be seen, that the shift of the aerodynamic center is
strongly dependent on the pitching moment. On the combinations of the rectangular wing the
aerodynamic center is shifted upstream, at transonic speeds, corresponding to the destabilizing
interference moment, and downstream at supersonic speeds, corresponding to the stabilizing
interference moment. On the W1 B 2 combinations the shift of the aerodynamic center is nearly
twice as much.

b) Sweptback wing

For the combinations of the sweptback wing the shift of the aerodynamic center has positive sign
in the tested Mach number range and reaches relatively high values at supersonic speeds. Body
thickness has the same effect as for combinations of the rectangular wing.

c) Delta wing

Shifts of aerodynamic center are of positive sign at all Mach numbers but smaller than on the
configurations of the other wings. A distinct downstream shift occurs at supersonic speeds and
increases with body diameter. Shift of aerodynamic center due to interferences has positive sign
on the configuration of the sweptback and the delta wing at all Mach numbers, except for the
combinations of the rectangular wing, which show a shift of negative sign at transonic speeds.
The strong downstream shift at superbunic speeds occurs on all configurations of the three wings.

7. CONCLUSIONS

Three-component force measurements were performed in the Transonic Wind Tunnel of the
Aerodynamische Versuchsanstalt Gtttingen in the Mach number range Ma a 0. 5 to 2. 0 on a
rectangular-, a sweptback- and a delta wing and on combinations of these wings with two pointed
bodies of different thickness. The main purpose of these investigations was to determine the wing-
body interferences. For all wing-body combinations the interferences in lift, in pitching moment,
in wave drag, in the lift-curve slope, in the moment curve slope, and the shift of the aerodynamic
center due to interferences were determined and discussed. Itoccarred, that on all combinations
these interferences are increasing with Mach number at supersonic speeds.
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Wing W1 W2  Ws

Sketch

b (mm) 300 300 275

S (cm ) 327 327 327

Cr (mm) 109 145,3 238

A 2,75 2,75 2.31

XQCP (mm) 27.2 115,8 119

(mm) 109 113 158.6

X 1 0,5 0

A (0) 0 52,8 60

Profile NACA 65 A 005

Table 1: Geometrical Properties of Wings
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Fig. 1 Dimensions of Wings and Bodies
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FFE)T OF REYNiOLDS NUMBWER AND BOIUhDARY-LAYER TRANSITION LOCATION

ON SHOCK-INDUCED SEPARATION

By James A. Blackwell, Jr.

NASA Langl~ey Research Center
Langley Station, Hampton, Va.



SM4ARY

A two-dimensional experimental and theoretical investigation has been conducted on an NACA 651-213
airfoil to determine the effect of Reynolds number and transition location on shock-induced sepa-
rated flow. The experimental investIL .tion was conducted ai Mach numbers from 0.60 tc 0.80, angles
of attack from 00 to 40, and Reynolds numbers from 1.5 x 100 to 16.8"x 10 . Transition locations
from 0.05 to 0.50 chord were utilized.

The results indicate that variation of the Reynolds number from
, full-scale to the usual wind-

tunnel values results in substantial. changes of the shock location, trailing-edge piisure recovery,
and boundary-layer losses at the trailing-edge. By properly locating the boundary-layer transition
point on the wind-tunnel model, full-scale results- can bo simulated at the usual wind-tunnel
Reynolds numbers. The required location of the transition point can be predicted theoretically
with acceptable accuracy by simulating the boundary-layer characteristics at the airfoil
trailing-edge.

LI
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KFYB)T OF REYNOLDS NUMER AND BOUNDAPT-LAYER TRANSITION LOCATION

ON SHOCK-N1DUCED SEPARATION

By James A. Blackwell,' Jr.
NASA Langley Research Center
Latgley Stationi Hampton, Va.

INTRODUCTION

The correlation of data obtainedat the usual wind-tunnel values of Reynolds number on wind-
tunnel scale models nnd of data obtained during flight tests at much higher Reynolds numbers
indicates that at speeds where cubstantial shock-induced separation is present scale effects may
occur. In particular, a large Reynolds number diffeknce may affect the shock-wave location/on the
model'and the presence and extent of shock-induced separation. An example of the problem ora
large transport airplane is shown in figure 1, reproduced from reference 1. A recent investigation
into the nature of these scale effects and their minimization has resulted in a wind-tunnel tech-
nique that provides good agreement between flight and wind-tunnel data for the. conditioris investi-
gated. The technique consists basically of properly locating the point of boundary-layer transition
on the wind-tunnel model. This paper will discuss the results of this investigation.

The basic phenaotena of scale effects at speeds where shock-induced separation is present are
illustrated schematically in figure 2. In flight, at large Reynolds numbers, the boundary layer
becomes turbulent near the airfoil leading edge. At transonic Mach numbers, a shock wave forms
and moves rearward with increasing Mach number. When the shock is sufficiently strong, the shock
induces the boundary layer to separate, hence, the term "shock-induced separation." Presently for
most wind-tunnel investigations, the boundary layer is made turbulent near the leading edge of the
airfoil with a boundary-layer transition trip. Since the difference in wind-tunnel and flight
Reynolds numbers may be large and the relative thickness of the turbulent boundary layer varies
inversely as approximately Reynolds number to the 1/5 power, the relative thickness at any given
percent chord station is greater on a small-scale wind-tunnel model with transition fixed.near the
leading edge than on a similar full-scale wing with nautral transition near the leading edge in
flight. Due to the greater thickness of the wind-tunnel boundary layer, the flow separates at a
lower Mach number and is more severe than in flight. The greater displacement of the separated
flow tends to push the shock farther forward than in flight.

No general procedure has been developed for correcting wind-tunnel data to flight conditions
when shock-induced separation is present. Therefore, a new experimental wind-tunnel technique is
desired to minimize scale effects for these conditions. The results presented in the recent paper
entitled "Wind-Tunnel-flight Correlation of Shock-Induced Separated Flow," (ref. 1) indicate that
by moving the point of transition rearward on the wind-tunnel model when the flow has separated,
the shock position on the model approached the same location as on the flight airplane. Based on
these results, a solution to minimize scale effects in shock-induced separated flow might lie in
properly locating the boundary-layer transition position on the wind-tunnel model such that the
boundary layer encountered in flight is simulated on the wind-tunnel model in the region of
separation.

In order to obtain a better uwderstanding of the factors involved in minimizing the effects of
Reynolds number when shock-induced separated flow is present by moving the boundary-layer transition
point rearward, a comprehensive two-dimensional wind-tunnel experimental and theoretical investi-
gation has been conducted over a wide range of Reynolds numbers with varying transition location.
The results of this investigation will now be presented. It should be emphasized that the research
on the concepts presented here is continuing on an intensive basis, and the present paper should
be considered a status report rather than a final summation.

The author is indebted to R. T. Whitcomb who proposed the basic approach to this research, to
A. A. Luoma who conducted the experiments, and to R. D. Samuels who assisted in the theoretical
boundary-layer calculations, all of the Langley 8 -Foot Tunnels Branch.

SYMBOLS

b span of wing, ft (m)
c section-lift coefficient

P-P.Cp pressure coefficient,

Cp,sonic  pressure coefficient corresponding to local Mach number of 1.0

c chord of airfoil, in. (cm)
if boundary-layer shape factor, 8*/0
M free-stream Mach number
p local static pressure, lb/ft2 (newton/meter 2 )
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p.0 static pressure in undisturbed stream, ib/ft 2 (newton/meter 2 )

Apt  total-pressure loss, lb/ft2 (newton/meter 2 )

qO dynamic pressure in undisturbed stream, lb/ft2 (newton/meter 2 )

R Reynolds number
x ordinate along airfoil reference line measured from airfoil leading edge, in. (cm)
CL geometric angleof airfoil reference line, deg
5* boundary-layer displacement thickness, in. (cm)
e boundary-layer momentum thickness, in. (cm)

Subscripts

T denotes boundary-layer transition location
W.T. wind tunnel
F.S. full scale

Wind Tunnel

The experiments were conducted in the Langley 8-foot transonic pressure tunnel. This facility
is well suited to the investigation of the effects of Reynolds number on two-dimensional models at
transonic speeds. The wind tunnel has solid side walls which act as end plates for the two-
dimensional model. Also, substantially larger chord models may be tested in this facility than
could otherwise be tested in tunnels designed for two-dimensional testing since the wind tunnel is
-approximately 7 feet (2.80 m) in height. Good results may be obtained in this facility for large
chord models since the upper and lower walls are slotted, which allows a development of the flow
field in the vertical direction approaching that for free flight. The slot opening ab the position
of the model was approximately 6.4 percent of the upper and lower surface walls. Further, the
8-foot tunnel is a variable-pressure tunnel which allows investigations to be conducted over a wide
range of Reynolds numbers with the same model.

Model

The-two-dimensional model investigated is shown in figure 3. The model was tested in an
inverted position. The airfoil is the NACA 651-213 with . = 0.5 mean line (fig. 4). This air-
foil was selected for several reasons. It is the same shape as the midsemispan section of the
T-33 airplane for which flight data are available (ref. 3). A sketch of the T-33 airplane is shown
in figure 4. Since the T-33 wing is essentially unswept and has a high-aspect ratio, correlation
with two-dimensional data at the midsemispan was expected to be good. The six-series airfoil was
also selected because it represents a class of airfoils that have been recently used in high sub-
sonic speed airplane design. The model chord was 3 feet (0.91 m) in length.

Transition Strips

Transition trips were located at the same position on both the upper and lower surfaces of the
model.* Results were obtained for transition strips located at 5, 20, 30, 4o, and 50 percent chord.
The strips were 0.1 inch (0.25 cm) wide consisting of carborundum grains set in a plastic adhesive.
The size of the carborundum grains for each location was calculated using reference 4.

Measurements

The lift force acting on the airfoil was obtained from surface pressure measurements along the
center line of the tunnel.

Drag forces acting on the airfoil were derived from vertical variations of the wake total and
static pressures measured with the rake shown in figure 3; however, 1.hese results will not be
presented in this paper.

The boundary-layer data presented herein were derived from measurements taken with a total
head rake located at the trailing edge of the model. The total head tubes were flattened horizon-
tally and closely spaced,

The total head and static pressures were measured with the use of electronically actated
pressure-scanning valves. The range of the gages in the valves was varied, depending on type of
measurement and on the wind-tunnel conditiona.

Corrections

The major effect of the wind-tunnel wall on the results presented herein is a substantial
upflow at the position of the inverted model so that the real aerodynamic angle of attack is



significantly less than the geometric-angle. The mean value of this upflow at the midchord of the
model, in degrees as determined by the theory of reference 2, is approximately 4.4 times the
section-lift coefficient. For the design section-lift coefficient of 0.20- this angle deviation
is approximately -.0.88o. For the present investigation, where the lift has been obtained by
surface-pressure measurements, this deviation has:little effect on the validity-of these results.
It merely causes a change of the geometric angle of attack. at uhich a given set of results are
obtained. The angles of attack used in the results presented herein have not been corrected for
this upflow.

The theory of reference 2 indicates the tunnel-wall blockage effect is small.

Range of Tests

The investigation was conducted over a.Mach number range from 0.60 to 0.80. The-angle of
attack varied generally from abgut 00 to 40 in 10 increments. The Reynolds number of the investi-
gation was varied from 1.5 x 10 which approximates the lowest values usually used for wind-tunnel
investigations- to 16.8 million, which is near the Reynolds number for which full-scale flight
results were obtained on the T-33 airplane (ref. 3).

DISCUSSION

Wind-Tunnel Results

Flight wind-tunnel correlation.- A comparison of the wind-tunnel results and flight results
from the T-33 airplane (ref. 3) are presented in -figure 5 for a Mach number of 0.8. The flight
data-were obtained at a Reynolds number of 19 million based on the local chord, and the two-
dimensional wind-tunnel results are presented at 16.8 million. The transition strip was fixed near
the leading edge of the two-dimensional airfoil at 5-percent chord since this was thought to be
representative of the natural transition location of the upper-surface flight results. The com-
parison shown in figure 5 and in other data not presented indicate generally good agreement between
the flighit results and the wind-tunnel results obtained at full-scale-Reynolds numbers. Therefore,
for the subsequent analysis, the wind-sunnel data taken at 16.8 million will be considered repre-
sentative of full-scale results. It should be noted that for the condition presented, a small
amount of shock-induced separation is present.

Effect of Reynolds number and transition location.- In figures 6 to 8, the effects of Reynolds
number and transition location on the section aerodynamics are presented. The results shown
indicate, first, the effect of increasing the Mach number at a constant angle of attack (L = 00)
from subcritical speeds to a condition with shock-induced separation and, second, of increasing the
angle of attack so that shock-induced separation occurs. It is felt that these examples are
representative of the data obtained during- the investigation. The data presented include pressure

distributions on the airfoil and profiles of the boundary-layer total head loss t- . Results are

presented for only the airfoil upper surface in order to simplify the analysis. e upper surface
is generally the most critical as regards shock-induced separation; however, all conclusions
reached regarding shock-induced separation on the airfoil upper surface will also apply to the
lower surface.

For each comparison, three sets of data will be shown. The first set of data was obtained at
16.8 million with the transition located at 5 percent chord and represents what will be referred to
as full-scale results. Th second set of data represents data taken at the usual wind-tunnel
Reynolds numbers of 3 x 100 with the transition fixed near the leading edge (0.05c). As previously
indicated, this is the wind-tunnel technique presently in general use. The third set of data
represents data obtained at wind-tunnel Reynolds numbers with the point of transition moved rear-
ward of the leading edge to a location that best approximates full-scale results.

The results at subcritical speeds (M = 0.70) for an angle of attack of 00 are presented in
figure 6. These results indicate that at the same transition location (0.05c) for full-scale and
wind-tunnel Reynolds numbers, there are only small variations in the pressure distribution over the
airfoil. However, it should be noted that the trailing-edge pressure recovery is less for the
wind-tunnel Reynolds number. Al3o, as would be expected, the boundary-layer profiles indicate a
thicker boundary layer at the airfoil trailing edge for the wind-tunnel Reynolds number. When the
transition is moved rearward to the position for the best correlation of the trailing-edge pressure
recovery for the high and low Reynolds number (40 percent chord), the boundary-layer profiles also
are the same.

The effects of Reynolds number and transition location when the Mach number is increased from
0.70 to 0.80 at m = 00 are shown in figure 7. For the full-scale case, boundary-layer setaration
has begn induced by the strong shock wave. However, for the data obtained at a Reynolds number of
3 X 100 with the transition near the leading edge, the separation is substantially greater, the
shock wave is farther forward on the airfoil, and the trailing-edge pressure is decreased. When
the transition point is moved rearward at wind-tunnel Reynolds numbers, the trailing-edge pressure
coefficients, the shock-wave location, and the trailing-edge boundary-layer profiles are all in
good agreement with full-scale results for the transition location at approximately 45 percent
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chord. It should-be noted that the data presented et xT c = 0.45 are interpolated from the data
obtained at = 0.40 and 0.50.

As another illustration of the effect of Reynolds number and transition location, data are
shown foir an increase in the angle of attack to 30 at a Mach number of 0.75 in figure 8. As in the
previous exazple, good agreement is obtained between the data for the full-scale case and for wind-
tunnel Reynolds numbers Yhen the transition is moved-rearward. For this case, the transition
location for best agreement was at the 4O-pereent chord.

Based on the-above results and other data not presented, it is concluded that for conditions
at which shock-induced separation is present, good-agreement can be obtained between full-scale
data and results obtained at wind-tunnel Reynolds number with the proper location of the transition
strip. However, the results also show that the transition point for the best agreement varies
somewhat with changes of the test conditions.

Theoretical Analfsis

To allow general utilization of the experimental approach to simulating full-scale shock-
induced boundary-layer separation characteristics by moving the boundary-layer transition location,
a method must be developed to predetermine the transition location for any airplane or flight
condition without resort to e.periments. This requires a more complete understanding of the funda-
mental factors governing the boundary-layer development. In order to provide some insight to this
problem, a limited theoretical analysis was undertaken.

The experimental results (figs.A6 to 8) indicated that even with shock-induced separation
present, the transition locations for best agreement between data at wind-tunne3,Reynolds numbers
and full-scale Reynolds numbers do not vary appreciably from the location for subcritical speeds
(i0 percent chord). It therefore appeared that a theoretical analysis based on sibcritical pressure
distributions and boundary-layer theory might be applicable. Various theories (re"s. 5 to 8) were
considered for the boundary-layer analysis. It was found that the results were not significantly
different using the theories investigated. For the- following study the boundary-layer calculations
will be based on reference 5 for the'laminar portion and reference 6 for the turbulent portion..

Theoretical boundary-layer characteristics for subcritical condition.- In figure 9, theoretical
boundary-layer characteristics (8* and H) are presented using the above-mentioned theories for the
subcritical pressure distribution of figure 6. Ita are presented for the. conditions representing
the full-scale results and the wind-tunnel results with the transition located at 5 percent and
40 pereent chord, the 4O-percent chord transition location being the experimental condition for best
wind-tunnel-full-scale correlation of the trailing-edge pressure recovery and boundary-layer
profiles. It my be seen that at the trailing edge the theory also provides a good agreement of
the boundary-layer characteristics.

For the distribution of the theoretical displacement thickness over the chord it is obvious
that the 5* distribution at the wind-tunnel Reynolds numbers with transition at 40 percent chord
is a good approximation to the displacement thickness at full-scale Reynolds numbers over the
critical rear portion of the airfoil. The large effect of Reynolds number and transition location
on the boundary-layer characteristics is indicated by comparing the full-scale results and wind-
tunnel Reynolds number results at XT/C = 0.40 with the wind-tunnel Reynolds number characteristics
for the transition located at 5 perceht chord.

On the right side of figure 9; the theoretical boundary-layer-shape factor (H), which indicatesthe boundary-layer separation characteristics, is presented over the rear portion of the airfoil.

With the transition located at 40 percent chord for wind-tunnel Reynolds numbers, the data indicate
the full-scale separation characteristics are adequately simulated over the rear portion of the
airfoil; in particular, they are matched at the airfoil trailing edge. This is significant since
the oil-flow photographs taken during the investigation indicate the shock-induced boundary-layer
separation originates at the airfoil trailing edge and not at the shock wave. The shape factor
indicates the flow for the transition located at 5 percent for wind-tunnel Reynolds numbers to be
substantially nearer separation than for the full-scale results.

Basic criteria.- Since separation does occur initially at the trailing edge experimentally, in
the theoretical analysis the assumed criteria for best wind-tunnel-full-scale correlation will be
to match the boundary-layer characteristics at the airfoil trailing edge. Further, since the
primary interest is separation, the values of H are made equal. Throughout the following analysis
this approach will be referred to as the "tr&Aling-edge criteria."

Theoretical variation of transition location with Mach number and pressure distribution.- The
transition locations obtained experimentally (figs. 6 and 7) varied as the free-stream Mach number
was increased to supercritical speeds for a constant angle of attack. Therefore, it appears that
the transition location for best wind-tunnel-full-scale correlation might be sensitive to the free-
stream Mach number or to the change or the shape of the pressure distribution as Mach number is
increased. In order to determine the sensitivity of the transition location, theoretical calcula-
tions were made for a range of pressure distributions for various Mach numbers The pressure
distributions considered are shown in figure 10. The primary variables are (1) shape of leading-
edge pressure distribution, (2) trailing-edge pressure, and (3) shape of the aft end pressure
recovery. The shape for the pressure distribution with the favorable gradient over the forward

I,



portion of the airfoil is typical for near-zero lift conditions such as obtained in a dive. The
rooftop pressure distribution represents',the conditions generally expected in flight at the higher
lift conditions. The variations of the pressure distributions over the aft portion of the airfoil
are similar to those noted experimentally on various types of airfoils.

Using the subcritical pressure distributions shown in figure 10, the tramsicioh locations w~re
calculated theoretically for various Mach numbers with, a full-scale Reynolds number of 16.8 Y 100
and a wind-tunnel Reynolds number of 3.0 x 106. The results indicated very little effect of Mach
number on transition locations (less than 1 percent). Also, the small effect of Mach number on
the transition location appears to be independent of the pressure distribution, since the same
conclusions as obtained for the present analysis may. be reached using flat-plate theory of
reference 9.

The effect of the changes in pressure-distribution shape on transition location have been
calculated for a Mach number of 0.70 and are presented as vertical lines on the horizontal scale
of figure 10. On the basis of this limited analysis, it can be seen that the changes in the shape
of the pressure distributions over the forward part of the airfoil produce significant variations
in the theoretical transition locations. However, the changes in the aft end distributions have
only slight effects on these locations.

An analysis of the basic factors involved suggests that the primary influence on the theoreti-
cal transition location is the variation of the pressure gradient in the region of transition shift;
'iat is, where the boundary layer is turbulent for the full-scale Reynolds number case and laminar
i wind-tunnel Reynolds -number condition. This conclusion is strengthened by the fact that flat-
pl. e theory for momentum thickness (ref. 9) pi'edicts generally the same transition locations
(0..', chord) as that calculated for the -flat or "rooftop" forward pressure distribution.

Comparison of Experimental and Calculated Results

The preceding theoretical analysis suggests that for conditions where severe shock and
separation is not present, at least, correlation of experimental and calculated transition loca-
tir.s at wind-tunnel Reynolds numbers might be achieved when the pressure gradients-over the region
of transition shift are similar. For the 14- 0.70, m =- 00 experimental case (fig. 6) the pressure
gradient over the region of transition shift lis similar to that for the schematic distribution of
the theoretical analysis as shown by the dashed line on the left side of figure 10. The best
experimentally determined transition location (0.40 chord) is the same as the calculated position.

Cases where substantial shock and separation is present will now be considered. For the
M = 0.75, m = 30 experimental rc'e (fig. 8) the pressure gradient over the region of transition
shift is also similar to that o othe dashed line on the left side of figure 10. Again, the best
experimental transition location is the same as that calculated (0.40 chord). For the M = 0.80,
= 00 experimental condition (fig. 7), the pressure gradient from 0.05 to o.45 chord is similar

to that for the solid line of the theoretical analysis. Again, the experimental transition
location (0.45 chord) is the same as the calculated value. In these two cases, correlation is
achieved even though the nature of the actual flow is substantially different from the assumptions
of the theory used for the calculations. These reasons for this agreement are not yet fully
understood.

Application

The agreement of the calculated and measured transition locations for simulating full-scale
characte-istics suggests that the theoretical "trailing-edge criteria" is a reasonaole approach to
the pred .ction of the transition location. This agreement further indicates that in the calcula-
tions only the pressure gradient over the region of transition shift need be considered.

Effect of ratio of wind-tunnel Reynolds number to full-scale Reynolds number.- In order to
indicate the variation of the theoretical transition location on the wind-tunnel model for various
full-scale Reynolds numbers, figure U. is presented based on a wind-tunnel Reynolds number of
3 million. Theoretical calculations indicate that only small variations occur (order of 1 percent)
in the results shown for realistic changes in the reference wind-tunnel Reynolds number for a given
Reynolds number ratio. Variations representing the two extremes of pressure gradients over the
forward portion of the airfoil in figure 10 are shown. Also shown in figure li is the transition
location curve calculated using flat-plate theory for momentum thickness (no pressure gradient).

Effect of variations of transition location from the optimum.- In conducting a wind-tunnel
test, it is not always convenient or practical to change the transition location with a change of
test conditions. Therefore, an attempt has been made to assess the effects of varying from the
optimum transition location. An indication of the effects is provided by cros-plots of the
experimental data obtained for various locations. For the cases where shock-induced separated flow
is present, a change in the transition of 5 percent chord produces a movement in the shock wave of
approximately 1 percent chord.

Limitations of applicability.- Certain comments as to the limitations of the applicability of

the method are warranted. Since laminar flow must be maintained ahead of the transition strip, the
method is limited to classes of pressure distributions that do not have severe leading-edge peaks
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at supercritical speeds that would result in natural boundary-layer transition ahead of the transi-
tion strip. It should also be noted that the model must be maintained absolutely smooth in front
of the transition strip to prevent transition of the boundary layer.

Rcalts of a number oe investigations conducted in the 8-foot transonic pressure tunnel have
indicated that, when the transition is rearward as specified by the proposed criteria and a strong
adverse gradient is present ahead of the transition, more 'severe boundary-layer separation may be
present than when the transition is in the normal location near the leading edge. For such
conditions, more applicable results are obtained with the transition forward.

Results not presented indicate that when the transition strip is just ahead of the base of
the shock, laminar separation occurs ahead of the transition strip. Thus, the maximum rearward
movement for which applicable results can be obtained is limited. For the airfoil of the present
investigation, the limit is approximately 50 percent chord.

Further Study

In addition to the results presented herein, considerable effort is being devoted to further
analyzing the great body of data obtained during this investigation. Also, work is planned in two
additional areas. One, the extension of the pre r.t t4,-dm,.,,ional method to the three-dimensional
cases, and second, a study of the applicability of the technique to the proper simulation of full-
scale buffet characteristics.

CONCLUDING REFARKS

A two-dimensional experimental and theoretical investigation has been conducted for an
NACA 651-213 airfoil to determine the effect of Reynolds number and transition location cn shock-
induced separate4 'low. The results have led to the following conclusions:

1. Variati the Reynolds number from full-scale to the usual wind-tunnel values results
in substantial chang, ' the shock location, trailing-edge pressure recovery, and boundary-layer
losses at the trailinE ,e.

2. By properly locating the boundary-layer transition point on the wind-tunnel model, full-
scale results can be simulated at the usual wind-tunnel Reynolds numbers.

1. The required location of the transition point can be predicted with acceptable accuracy
by theoretically simulating the boundary-layer characteristics at the airfoil trailing edge. In
this procedure, only the surface pressure gradient in the region where the boundary layer is
turbulent for the full-scale Reynolds number and laminar for the wind-tunnel Reynolds number need
be considered.
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Figure 1.- Supercritical pressure distribution. M =0.85;
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Figure 2.- Effect of boundary layer on shock-induced
separation.

Figure 3.- Wind-tunnel installation ot two-dimensionAl model.
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WIND TUNNEL EXrERIMENTS ON THE INTERFERENCE
BETWEEN A JET AND A WING AT SUBSONIC SPEEDS

by

r J. A. Balgley

Royal Aircraft Establishment, Farnborough



In most wind-tunnel experiments on complete aircraft models it is not possible to represent the enghte jet flow. A series of experi.
-ments are reported in this note in which the Influence of a blown jet, simulating the exhaust stream of a fan-jet engine, on the pressure
distribution on an adjacent wing has been measured. A brief survey is given of the effects of flight Mach number, jet pressure ratio,
vertical and horizontal spacing between engine nacelle and wing, and shape of the nacelle, on the incremental wing pressures due to the
jet. The possibility of representing the blown jet by a solid body extending behind the nacelle is also discussed.
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1 INTRODUCTION

Many current design proposals for large transport aircraft have large engines of high bypass ratio mounted on short pylons beneath
wings of about 250 or 300 sweepback. The engines have a front fan. and the annular fan nozzle is fairly close to 1he wing leading edge.
With such an arrangement, it is possible that the jet flow paing close to the wing has a significant influence on the wing pressure

distribution, and on the lift and drag. To measure such effects on a complete model of the aircraft at high subsonic speeds is very
difficult, and most wind-tunnel tests are therefore made with the engines represented by simple open "flow nacelles", in which only the
external geometry of the engine nacelle is represented and no attempt is made to simulate the jet flow.

The experiments described in this paper were an attempt to find out, using a simpler apparatus, whether jet interference effects are
likely to be large for an engine installation similar to tha on current large subsonic transport aeroplanes, or whether the conventional
wind-tunnel model without jet will still give a satisfactory representation.

An aircraft of this type will normally be designed to have a subsonic type of flow over the wing, with straight isobars and a chord.
wise pressure distribution of the type shown in Fig.l. This has a "roof-top" shape, with a flat plateau over the front part of the section
with near-sonic local velocities and a fairly steep pressure recovery behind it. A fairly thick section is normally used, and the lower surface
velocities are likely to have a fairly high peak around mid-chord, as shown. There are three places where any alteration of this pressure
distribution in the presence of the jet may lead to particular problems:

(1) around the nose, which has been carefully shaped to develop a favourable supersonic peak as incidence or speed increases,

(2) around mid-chord on the lower surface, where any further increase in local velocities may well lead to the formation of shocks;

(3) towards the rear of the lower surface, where any increase in the adverse pressure gradient may lead to flow separation.

2 FIRST SERIES OF EXPERIMENTS

All these problems could be investigated using an unswept wing, and the model shown in Figs.2 and 3 was therefore constructed.
For the majority of the tests, a wing of 10 inches span and 5 inches chord was used which had been tested in a smaller tunnel at
N.P.L. This was mounted between end plates as shown, and carried on a box framework from the traversing gear of the 2Y2ft X lft
Transonic Tunnel The pressure holes on this wing were distributed across the middle 4 inches of the span, so it was necessary to traverse
the wing past the jet to obtain a complete chordwise pressure distribution. Tests were made at a Reynolds number of about one million
(based on chord length) over a range of Mach numbers from 0.6 to 0.74.

The engine nacelle and jet were represented in these tests by the pipe shown, coming from the settling chamber of the tunnel and
terminating in a double nozzle simulating the two nozzles of a bypass engine. A fairly thick boundary layer develops along the jet tube.
and this is reducd in thickness by applying suction through the slots shown. Both nozzles were supplied by a common air supply, as
shown in Fig.4, and were arranged to choke at the exit, so the flow from the nozzles exhibits the characteristic pattern of alternating
expansion waves and shocks shown in Fig.S. Note here that the flow pattern expands with increasing jet pressure ratio in the usual way.
The jet pipe and wing were mounted quite separately in the tunnel, and no attempt was made to represent a pylon.

The displacement flow around the jet pipe itself modifies the wing pressures, so the influence of the jet is measured by comparing
pressures measured on the wing wher, the jet is blown at a prescribed pre-sure ratio (appropriate to the type of engine being simulated)
with the pressures measured when the jet total head is equal to that of the free stream. This latter condition corresponds to that obtained
with a free flow nacelle in a conventional model test.

A typical experimental result* is shown in Fig.6, at a jet pressure ratio of 2.4 (corresponding to an engine of bypass ratio about 5)
and for a wing-nacelle spacing appropriate to an airbus type of aeroplane with short fan cowls. The Mach number A, = 0. 7 gives
approximately local sopic velocity at the peak velocity on the upper surface, so corresponds essentially to the design condition at higher
Mach number on a swept wing, (As will be seen later, the phenomena under discussion do not seem to change significantly over a fairly
wide range of subsonic Mach numbers.)

It is immediately obvious that the jet has had very little influence on the upper surface pressures, although the presence of the jet
pipe has changed tl'em somewhat This conclusion, that there is virtually no jet interference on upper surface pressures, was confirmed
throughout the wholt range of configurations tested, so the upper surface will not be mentioned again.

Turning to the lower surface, it is clear that in this case there is no significant increase in the peak suction and little if any change
in the adverse pressure gradient over the rear part of the section. The peak has been moved forward by the combined effects of the jet
and the displacement flow around the jet pipe, and on a swept wing this would imply some change in isobar sweepback, but for this case
no serious problems would be anticipated. The pressure increments due to the jet flow do not exceed AC =0. , and the change in
sectional lift coefficient is only about ACL  00?.

The results of this first test are rather comforting to the wind-tunnel engineer, suggesting that the use of free-flow nacelles on his
complete models should not give misleading answers (at least in this context), but it seems desirable to explore the influence of various
changes. In the next few figures we show AC P - the difference in lower surface pressures when the jet is blown at the prescribed
pressure ratio and those when its total head is equal to the free-stream. Fig.7 shows the results for the datum configuration (with
\'iD,, = 044, '1Dc . 029) at several free-stream Mach numbers, and it is clear that there is only a small ,ncrease in ACP1 oer this range
of free-stream Mach numbers, although the local Mach number at the peak varies from ,tf = 085 to I :

Fig 8 shows the effect of moving the nacelle vertically closer to the wing, and as might be expected there is a change in magnitude
of ACrIT but a remarkably constant shape of curse is obtained For the closest position, the peak again represents a locally sonic

The experimental results are more fully reported in Ref.l
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velocity, and it would hardly be possible to ignore this amount of jet interference. Howeve7, this position seems to be closer to the wing
than any aircraft design published so far.

Fig.9 shows the influence of increasing the jet pressure ratio, and exactly the same pattern appears as in Fig.8. As jet pressure
incre=s, the magnitude of ACp, increases, but the shape of the curve remains virtually constant until at Il/p o 

= 4 the rear peak seems
to be somewhat broader. This seems a rather surprisin result - the pattern of alternate compression and expansion waves in the jet
lengthens as jet pressure ratio increases, and it might be expected uhat this would be shown up by an expanding pattern of peaks and

troughs in A¢Pl on the wing.

For the wing.nacelle configurations so far considered, the rrst peak in ,sCp, falls on a par, of the wing chord where the velocities

on the Isolated wing are no higher than the free-stream velocity. In Fig.10 is shown an example where the peak suction of the inter-
ference field falls on a part of the wing where the velocity is already high, ard the interference effects are thereby magnified. The nacelle
was moved back by about 25% chord, so that the annular fan nozzle now lies behind the wing leading edge (probably a rather unlikely
position in practice). Tie peak suction of the interference field has moved back (but only about half as much as the nacelle movement)
and now falls on top of the suction peak of the basic wing pressure distribution. The interference is magnified considerably, and might
now be a serious problem to the aircraft designer.

Before discussing some further work which was done in the search for an explanation of these observations, it is worth mentioning
one techniqae which has been used in some wind.tunnel experiments to simulate the effects of a blown jet. The jet is represented by a
solid extension of the nacelle, in the hope that the displacement flow about a suitable solid body will be similar to the displacement
flow around the jet. To check this point, in one test the blown jet was replaced by a solid body extending some distance behind the
wing trailing edge, as shown in Fig.4. Measurements showed that the jet from the annular nozzle followed closely the contour of the
centre body, and expanded at only about I* behind this (confirmed by Lawrence's measurements3 of the expansion of a similar flow with
cylindrical afterbody), so the shape of the solid body was made to represent a constant area jet. The "jet interference" on the wing with
this solid body is shown in Fig.lI for two cases, compared with ACp] due to the real jet. It is obvious that there is little or no
resemblance between the two curves, and it seems very doubtful whether this technique of jet simulation has any validity.

3 SECOND SERIES OF EXPERIMENTS

With the experimental rig shown in Figs.2 and 3, it was impossible to make schlieren or shadowgraph observations of the flow. These
seemed to be desirable, so a new wing was made to span the width (30 inches) of the tunnel. For this purpose the slotted sidewalls were
replaced by solid glass walls. The wing section chosen was slightly different to the previous one, and for various reasons the wing chord
was increased from 5 to 6 inches. The jet tube was unchanged.

Fig.12 shows a comparison of ACp/for the new configuration and the previous one. The horizontal coordinate has been measured
in terms of the fan nozzle diameter (which remained constant) rather than wing chord. It is seen that there is considerable similarity in
the shape of the interference curve and in the magnitude of the front peak; the rearward peak is somewhat smaller. Fig.13 shows the
corresponding schllern picture of the flow at l/0 0 = 24, whilst Fg.14 shows the flow pattern at l/p o  2.9. These begin to show why
in the earlier tests there was litle change in the shape of the interference curve: although the pattern of shocks in th. jet on the far
side of the nozzle expards with increasing jet pressure ratio in the conventional way, on the side of the jet near the wing the shocks are
apparently "fixed" by the influence of the wing. This leads to a lack of symmetry in the jet behind the second nozzle, which is evident
in Fig.13.

Fig.1S shows the values of ACp! obtained for this nozzle position, compared with those obtained for a much closer position. In the
second case the pressure increments increase considerably with increasing jet pressure ratio, and the peaks tend to move rearwards at the
same time. Here it seems that the pattern of shocks and expansions in the jet is directly influencing the wing pressure distribution

Although the wing is not fully immersed in the jet (as schlleren photographs show), the jet interference seems to be different in character
from that in the earlier examples. It is suggested that there may well be a critical spacing between wing and nacelle, below which the
jet directly influences the wing, as here; this minimum spacing may be larger at higher jet pressure ratios.

At this point of the investigation, it seemed likely that the shape of the nacelle afterbody might have a controlling influence on the
shape of the jet interference curve - the main suction peak in ACp, seemed to occur just behind the narrowest part of the gap between
the wing and nacelle, for example. As the latest trend in engine design is towards longer fan cowls and correspondingly short afterbodies,
the centre-body of the jet nozzle was shortened as shown in Fig.16. The fan nozzle is unchanged, and is in the same position relative to
the wing.

As anticipated, this change makes a very masked alteration in the interference pressue curve, Flg.17. The main suction peak now
appears further back, and is a little higher than with the previous nozzle. There is the same effect with increasing jet pressure ratio that
the shape of the curve is almost constant but the magnitude of ACp/ increases, this seems even more surprising in the present cae For
the datum jet pressure ratio I1/p o = 2.4 the peak value of ACp, is only a little higher than it was in Fig.lS, but because this is super
imposed on the suction peak of the wing field there is a "nionification" of the pressure increment with increasing jet pressure ratio as
occurred in earlier cases when the two suction peaks coincided.

4 CONCLUSIONS

The investigation reported here has been rather limted in scope, and general conclusions must be rather tentative. Fuller details of
the experiments are reported us Refs.l and 2, these results have been taken into account in reaching the conclusions listed below. All
these points refer specifically to aUcraft of small or moderate sueepback operating at subritkial Mai.h numbers and with engines of faul)
hlajs bypass ratio for which the ratio of engine diameter to wing chord is around '/,.
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(1) Except when the jet is very close to the wing, it has no significant effect on the pressures on the upper rurface.

(2) When the vertical spacing etween the fan jet nozzle and the wing leading edge Is len than about one-fifth of the nozzle

diameter, the jet.induced pressures on the wing are murkedly dependent on jet pres.re ratio, and the wing can be regarded as being
immersed in the jet. This limiting spacing increases with increasing jet pressure ratio.

(3) When the vertical spacing between wing and jet is greater than this limit, the shape of the incremental pressure distribution on
the wing, AC1. is characteristic for a particular nozzle and afterbody configuration and fore-and-aft location relative to the wing. The

magnitude of Cincreases as the jet is brought closer to the wing and as the jet pressure ratio increases, but increases only slightly as
free-stream Mach number is raised.

(4) The dominant feature of the jet interference curve, AC 1, is a velocity peak, which may be followed by a subsidiary peak
further downstream. For a range of configurations which appear to be of practical interest, the maximum suction increment Is
.ACpi 4 0.15 at 11/p, - 2.4; this is unlikely to lead to a large change in overall wing characteristics. If the suction peak due to jet
interference falls close to the suction peak on the wing in :he presence of the nacelle without jet, the values of ACp increase rapidly with

increasing jet pressure ratio, and might be of major practical significance in some cases.
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Fig.13 Schlieren picture of flow
KID, = 0.38, ZIDe 0.29, IM, 0.72, H.Ip = 2.9
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Fig.16 Schlieren picture of flow with long-cowl nacel1le
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SOMMAIRS

Is ddveloppement des avions do transport subsoniques & grand. oapacitd a conduit au choix do gros
turbo-r6aoteure i double flux ayant un taux do dilution 6lev6 :il en rdsulte des problbmea adrodyna-
miques nouveaux, lids k l.'importance des ddbita captda par la pries d'air ot aux effets do l.'interaotion
du jet froid dui *fan" sur l'dcoulement extdrieur loreque le rdacteur eat suspendu sous la voilure.

En cm qui concerns la prise d'ir on doit recheroher ian ccmprcmis assurant ian 6coulenent sans ddcdfle-
meat interne au ddoollag* at sans survitosse prohibitive sur la carbno on rdgiao de croisibro.

la forms d'wi profil rdalisant co comprcaiis a At6 recherchde k l'aide do la mdthodo des analogies
6leootriquea, dont lea rdsultats valables pour un 6coulement de rdvolution incompressible ont A6d
affeotda des corrections clasiqas pour la transposition au. rdgims compressible do croisi~re.

le fonctionnement aux trbs foibles vitesses et notameat au point fix. fait apparaltre une distorsion
non ndgligeableo do l'dcouluaont interne, imputable au rdgims transsonique qui s'dtablit au contourant
dui bord d'attaque ot aux ddooflements qui en rdsultent.

1os rdsultate expdrimentaux corrospondants sont prdseatds et discutds.

Un. 6tude en soufflerie do lIa confluence dui jet primairo St do 1' dcouloment oxtdrieur transsonique au.
voisinage do la sortie dui jot eat dgalement prdsentdo, pour mttro on 6vidonco l'influnco du rdgme
du moteur aur la structure do cot dcoulemont.

SOME IOBUM OF TRANSONIC FLOW FOR ENGINE NLCEUF.S OF AIRUS TYPE Afl1RMA?]

SUMMARY

High by pass ratio turbofans used for large subaonic transport aircraft envolve new aerodynamic problems
due to the importance of the mass flow both at the intake and at the exhaust.

For the intake lip problem, a compromise must be found to obtaiLn a flow without internal separation at
take-off, and without excessive external super velocities during cruise.

Electrical analogy has mado possible the study of various forms of lip profiles, by an incompressible
flow simulation corrected for compressibility effect, and the solution of the problem to a first
approximation.

At very low speed, however, and in particular in the static case, transonic flow and shock waves at the
leading edge may cause local flow separation internally, and distoraica of the total pressure profile.

Fxperizental studies of these phenoena, are presented,

For the exhaust problem and engine nacelle boattail dreg, soma transonic wind tunnel pressure measurements
on representative modelsa are also dis cusseod.
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L'AVE1N2EST DES NOUVEAUX M01T JR DOUiBLE FfLUX k taux do dilution dlov6 conduit k considdror arec, plus
dtattention ladrdynamique des nacelles dont 11importance relative par rapport a= diimen ions g&nd-
ma do l'avion eat fortoment accrus. La tratn~o do sotorittation on vol do croizibro attoint 7 & 8%

do In train6e totals do l'avion, ot lionjou d'tino 6twi. d'optiaisation do l1ensomblo &i partfr d'tine
configuration ddfinio on vertu de qtialqv:,r rgla empfriques approobhas peut Stre do 1/2% do 3A
POlUSS60.

L'tin des buts do cetto 6tudo pr~liminairo a AS6 do ddfinir tin cardnage dvitant Ito mirvitoases trans-.
soniques stir los profile ozternas en vol do coiaibro, ot Is traind qtii en rdsulto par onde do oboo
6ventuallou at frottement acora. Stil s'avdrait toutofois ndcossair. d'acceptsr de tolles wuritesa",
dos profile do moindre tralndo typo speaik"' [i] (2] sorsient k connid4ror.

La promibre phase consists k 4tudiisr 1. fuasau soul at IL en recharcher tine forme optiwdle qui sorvirs.
do point do ddpart pour 1' optiizisation do 1' ensemble naco] lo-avion (3 k 7]. Uno solution typo deo
probbhme est reprdssntdafiguro 1.* Lea r~partitions do prossion stir los profile do carbne ot d'arribre
corps traduisont lea caatriatiques suivantes t sur lo profil ortomne do In priso d'air, tine our-
vitosse eubcritique k peu prba constanto jtisqu'au dalk du maltro-couplo ; do rAmse str lo profil interne
du difftisour, tino plags do survitessss suboritiquas. Un bard d'attaque moins dpaio permttraiz d'att6-
nuor ces stirvitesse8, mais los porformances au. d4collago seraient pdnali,36es, comes noum lo yorrona,
Sur 1. rdtroint do Ia carbus, on observe vera l'arribro tins recomprossion r6gtuibro do 11coulent.
Stir le corps central, Io jet. du "Fan" s ddtond k tine prossion voisine do Is pression ambient*, donnant
naissance h tine succession d'ondes do d6tento ot do comprossion trbs attdnudoe.

Cos diffdronte 4ldmonts vent Stre msintsnant exasinds plum en d dtail, on considdrant aucoassivemont
scum laura aspects tranasoniquos 1s prob~bme do Is prise d'air au ddcollags at on croisibro. oelui do
Is prise d'air au point fixo ot aux trbs bassos vitessosp at 10 problbms du r6troint do in carbno ot
du corps central on vol do croisibre.

0PPD(ISATPIN DE LL FuISE DIAIR AU DECOLLAGE (A.,= 0,2) ET EN VOL DE CROISIEBE (M.,- 0.85)

tin procuasus trbs 416mentairo a Atd suivi pour rechercer cotto optimisation i tine certain. forms do
csrinago do in pris d'air dtant ddfinio a priori, is champ do l'dcouement do rdvolution autour do
cotta carbno eat ddtormin6 en incompressible. A cot effet, on 'Msls s n mthode d'analogi. 6iectri-
quo des 6coulements do rdvolution (8J dsns tins cuvo k fond inclind o4i oat dispoad tin sectsur do I&
maquetto do In prise dWeir, on matdriau ldger isolant (fig. 2). Le relev6 du champ adrodynaique fait
apparaltro lea zones do st 'vitesses 4 corriger, et pormet d orienter in rocherche d 'tne nouvelle forms
azoliordo. Par des ossais -Accessife, on aboutit sinai trbs r-apidoment au choix d'tine configuration
dent llessai. en soufflerie donne une 6valuatien prdcise des performances. A partir do co rdsultat, tin
nouvel cejustoment pout t'ro rechorch4 on s'sppuyant I nouveau sti Is sons des indicatiens roctisillios
dans l'anailogie incompressible.

tin certain nombre do r~igles empiriquea ont At6 ddgagdos par diffdrents autoura pour ddfinir in form.
initinls do in carbne et du fussati moteur (9 k 12j. * n calcul ntradrique on rdgimo incompressible eat
utilied par d'autres auteurs [13], as il n'oxisto pas encore, k notro connaissance, do mdthodo do
ca2.oul pour l'dcotilenent compreasiblo, tins tells mdthcdo eat on cetirs do ddveloppement k 110.N.E.R.A.
[14]. La mdthode suivie a done conasatd h procdder h uno correction des rdsultats obtenuu en incom.-
proasible par Is foratilo do KABMA-TSIEN, considdrie comas donnant tine approximation grossibre, main
auffisante pour guider Is choix d'un prefil.

Los figures 3 at 4 prdssntent doux 6tapes auccessives do in ddfinition do in form. do in pris d'air.
Cos figures donnent lea distributions do pression calculdes comme il viont d'Stro dit, pour lea nombres
do Mach do vol. Mwa 0,85 ot M 0,2. Loraque ce calcul fait apparaltro des zones supercritiquos
(rapport do in pression b. in pression gdndratrico , i{%, infdrieur 1 0,528), il pord dvidsmmant touts
prdciaion mais avertit seulenont quo in vitesso critique sera cortainenent franchie. Ainsi, 1. profil
iaitial "A" do in figure 3 fait prdvoir d'uns paxt tine forts survitesso stir la carbno extorno k
Moo n 0,85 consdoutive h tine courburo locale trep, accentude du profil. D'autre part, h M o 0,85
comne k Moo0 0,2, tins survitosse apparatt 6galeoent sur le profil du diffusetir interne, aui voisinago
do l'entrde :sachant par analogie avec lea berds d'attaque do voilure qu'en redressant son squelotto,
on paurra attdnuor ces atirvitosses internee, on a ddfini in solution "B". Dana cette solution, lea
surviteasco internee sent effectivonent ranendes h tin niveau acceptable, mal.s, h l1"extrados" (profil
externe do Is carbne), In faibie diix..tion do courbure donnde aui profil n's pas conpoand l'accdldra-
tion do l'dcoulemont duo h l'augmontation do l1"incidence", et Is aurvitesso eat devoniw supdrioure h
co qu'ello dtait antdriourement. On observe toutefois qu'su voisinago iinaddiat du bord d'attaque, lea
vitsssa extornes sent faiblos, et ii sera par consdquent admissible do lea accrottre on adoptant tin
profil do plus forte courbure locale. Cette disposition parmttra on m~me temps do rdduire in courbure
plus on aval, dans la rdgion oii olse eat trep accentudo. !Ae prefil "C" compard au prefil "B"(figure 4)
rdpond 4 ces conditions. La rdpartition do pression our is carbae oxterne oat prosque unifoms, i tin
nombre do Mach subsoniqus c.onstamont voisin do 1.* Au meo nombre do Mach Mm~ = 0,85, lea proanions
sur lo profil interno do is carbas sont pratiquement inchangdes ot reatent natisfaisanten ; & M,.- 0,2,
on observe toutofois un accroissemont do Is survitosso au contournaeant du bard d'attaque, cunadcutive
h l'augmontation do ceurburo. Cotte survitesso ddpasse la valour critique, isais peurra sans douto 8tro
attdnude par tin ldghro modification do in rdpartition des courburea du profil interns 4 l'entrde.
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L'obtontion h Moo 0 185 d'une vitesse critique quasi-constante our tout lextrdoo in.ique quo lVon
ot procho d'une configuration optimale.

Una premibro s~rie d'onsais a Wt entreprise sur la configuration "C" dans una soufflorie k basso,
viteose pour vdrifier son comportement interne au r4gima do ddcollago et aux trbs baa-eo vitesses ott
des troubles transooniquos saent h craindre au voisinage du bard d'attaque.

La figure 5 roprdsonto le montage utilisd dana in soufflorie S3 do Chalais Houdon. Le ddbit do in prise
d'air eot asourd par uno tromp. d'extraction disposdo 4 in suite d'un ddbitmbtre venturi. La carbne de
in prise d'afr, d'un dismbtre do 165 mm au plan d'sntrde du moteur, eat 6quipdo de prisos do prosion
statique 1Ison d'uno g~n~ratrico. Un peigns do preosions d'arrAt permet do rolevor Is proil do
i'dcoulemont au plan d'entrdo du moteur. La vitosso do Ia souffiorie eat limitdo k 100 m/o, Los rdsuj-
tato obtenus k M.,, = 0,2 sent roportda figure 6.

L'alluro do In rdpartition des prsssicns autour du bard d'attaque sot correctoinent prdvue par Is calcul,
7 main la surviteose interne au bard d'attaqus eat infdrioure 4 Is valour prddito. La diffdronco provient

on partie du fait quo 10 calcul oat effoctud en incompressible, mais aussi san partis du fait quo V'on
s'est contentd do mamumas approchdos dans ia cuve d'analogio 6iectrique.

leas rdsultats montrent l'abaence do phdnombnes transsoniques parasites autour du bard d'attaquo au
d'~collage IL Moo~= 0,2, solon l'objoctif du calcul d'optimiaation. Ii nWon eat toutofois pas do name au
point fix. at h trbas basso vitesse.

- PRISE D'AIR AU P0I~1 FIXE ET A TEES BASSE VITESSE

La figure 7 mantre l'dvolution do 1'dcoulement autour du bord d'attaque IL ltontrde do in pris d'air
loreque 10 nombre do Mach do vol Passe do M,,,, a 0,3 h Moo = 0, Is moteur 6tant au rdgime maximum. Le
contournoment du bard dtattaquo 6tant do plus en plus accentud, on observe d'abord tine survitessa
croissants, localenent suporeonique k Moo- 0,1t suivie d'une recompression trbs brutals do l'dcoule-
mont. Lorsque Is noebre do Mach oat r6duit k 0,08, in coucha limits au bard d'nttaque ddcolle ; is
phdnombne so manifses our 10 profil des preseions par 1' dtablissment d'une plage isobars rempingant
in points do survitosse. Cetto plage do ddcolloment s'dtend, lorsque M aC ddcrolt jusqulk 0.

La d6gradation des profile do pression d'arrit dana I. plan d'entrdo du "fan" reortds figure 8 traduit
l'offet du ddcolloment. Llefficacitd, rapport do in pression gdndratrico moyenne dana Is plan d'entrde
du motour, 'PF k la prossion. gdn~ratrico amont p~c, , accuse dgalement l'apparition du ddcolloment
commO 1s montre in courbo roportde figure 8.

Pour vdrifior Io r8io du nombro do Reynolds dana ceo phdnom'enes, des oesis aen "transition ddclanch5o"
au bard d'attaque ont At4 rdalis~s. La transition a Wt assumde par des file iongitudlnaux coll6s aur
lo bard d'attaque, dons dos plans mridiens r~gulibrament: espacdo (figure 9). Par ce procdd6, la diffu-
sian transversalo do la turbulence dmiso is long des fibs assure Is transition do Ia couche limits sans
provaquor do perturbation local., inddpoudeinment do la position du point d'arr~t au bard d'attaqueost
an liraitant au sioux ldpaisoisoment initial do in couch. Limits (15]. L'effet do in transition ainsi
ddolanchdo oat tr-bs important, comm. Io montre lea rdpartitions do prossions compar6os figure 9 :k
M,,.0,08, in couch. limits maintenant turbulento W'est pa ddcalide, contrairenent I lesnai en tran-
sition naturelie. A H ,:0, l'dtondue du ddcollement oat senaiblenent rdduite. Leo pressiona d'arTlt
dans I. plan du coisprosseur ainsi quo lfficacitd global. (figure 10) roproduisent lea m~mes effots.
Les perturbations transeoniquos do contournement du bard d'attaqu'j peuvent 8tre 6vitdes, si besoin)
oat, par llamdnagosent do portos auxiliairea dan a priaes d'air, mais ceci eat un autre sujet.

MIJE DE LA PARTIE ARRIERE DE LA NACELLE

L'intaliation d'esnai do In partie arribre du fuseau mateur eat prdsentde figure 11. Les paroie haut
at ba, do Ia veiae oant tine pormdabilitd do 8%. La dimension do la maquette pornet tin dquipomant des
profils en prison de preosion.

La figure 12 montre ion rdpartitions do proasion our Ie rdtreint do ia carbno at our l'arribre carps
aux: conditions nominales do in croisibre. Sur Io rdtraint do Ia carbne s'exerce Vera ltarribre tine
reompresson oubsonique rdgulibre, sans choc ni ddcoiiement. Le jet suporsonique du "fan" eat h pou
prbs isobars i in pression ambiante ; s structure oat ndanmoins marquis par tine succession d'ozxlos do
ddtento et do ccmpression do foible intensit6j comma Ia montre Ia visualisation otrioscopiqus, minis
quo ddcblo k poino la rdpartition des prossions.

La figure 13 montro l'offot d'tine variation du nombro do Mach pour tin rapport constant do in prossion
gdndratrico du jet, 4.j k In prosson gdndratrioe do l'dcoulmant,A~os. La recompression our in
carbino rests rdgulibro h H n 0,9, tandis quo i'acoroissment du taux do ddtente Nri' ave- is nonbro do;Too,
Mach fait appaza~tro une sinuoit6 plus inarqude do in pression our l'arribre corps duo & i'intensifica-
tion do i'onde do ddtente initials, h la confluenco dos detix dcoulemonto. Cot effot so retrouve, plum
accentud, figure 14, 6i sat dovnd i'otfset d'une variation du rapport JF/P, b X 00 donn6.
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Les pressions avr ia carhne no aont pas affoctdes par la variation du taux do d~tente, dana lea liuitoa
4tudid~s, uinis loa ozxles de d4tente et do cocmpression du jet s'Sintonsifiont fortement avoc Is rapport
do preaion.

Cat ensemible do r6suitatB montro quo i'doouloment autour des formos ohoisios pour in partie arribre du
fuseau moteur at tir a rdguior, au rdgimo normal do vol do croisi~re. Le priacipe n&me du montage
d',asai so prto toutefois k quelquos critiques. C'ost a3.nsi par example quo la non-roprdsentation du
bord d'attaqua do ia prize dWair conduit k des survitesses au mi~tro-couple vraisemblabiament moins
6iovdos quo lea survitosses rdoloas. Par ailiours, In prdsenco d'une coucho limits sur ie rdtreint do
ia carkna ralativment plus importanto quo sur i'avioa pout modifior 16g~remont lea conditions locales
do confluence des deoulemants extorno ot interne it la sortio du "fan", ot ia structure du jot qui en
rdnulto (16]. A cot dgaxri, des essais avec aspiration do la coucho limite en amont du cardnage pouvent
Atreoenvisag6a [17].

COMM~SION

Quoiques examples do phbncmbnes tranasoniques rencontrds dans l'dtude des cardnagea d'un moteur double
flux h taux do dilution 6lovd ont Atd prdsentds. Les mthodes do calcul an incompressible actuol-lement
encore utiis~es, no pormettont do prdvoir ces phinomknes qu' en prenibro approximation, mais sont
cependant un guide utile pour oriontor la, recherche d'une solution appropride.

Les d~looliomente do In couche limits au bc'rd d'attaque, rencontr~s dana certainas configurations, sont
dvideaiuont tributaires du nombre do Reynolds, et In plus pnande attention doit Atro apportdo hl'offet
do ce paranibtre, at au d6cianchament natural ou forod do la transition do la couch. limits.
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Abstract New Results on Steady, Two-dimensional

Transonic Flow
A brief report on the doctoral research +)

of two students is presented. The con-

tribution of H. Sobieczky is concerned Institut fUr Theoretische Gasdynamik der

with the construction and discussion of DVL, Aachen, Germany

two-dimensional transonic flow patterns.

In the thesis of H. Ndrstrud the integral 1. Introduction

equation method is used to treat transo-

nic flows past lifting airfoils. My present paper informs you about the doc-

toral research of two of my students. One

has finished his thesis, the other is still

working on it. Both investigations are con-

cerned with two-dimensional, transonic flow.

This type of flow is a rather crude approxi-

mation of the actual transonic flow about

an aircraft. The two papers under considera-

tion are theoretical. I know that an engi-

neer does not appreciate highly theoretical

work. Nevertheless, I hope that my infor-

mations will prove useful to you, because

two-dimensional transonic flow is basic for

the understanding of three-dimensional

transonic flow. Furthermore, the theoreti-

cal treatment I am going to present is rela-

tively simple,an engineer may find it not

too difficult.

2. Basic Equations

Two-dimensional irrotational transonic flow

is described by the well-known gasdynamic

equation and the equation of irrotationali-

ty. In what follows we assume small distur-

bances in the vicinity of the sound speed

W = c The two basic equations mentioned

can then be written

@ W / 0. (2)

W, i , K and c are, respectively, the ab-

solute value of the velocity, the flow angle,

the ratio of the specific heats and the

critical sound speed. Let the positive x-

direction be parallel to the oncoming stream.

Thus, we have to fulfil the boundary con-

+) Professor of fluid mechanics, head of the

DYL-Institut fUr Theoretlsche Oasdynamik
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ditions are functions of s and t. It is possible

to assign a linear system of Beltrami

-- / 1. c0 (3) equations to any solution of equation (5),
0 0in particular to any analytic function

E (S+ it)- 0 (S.0 + i'( S,t) (8)

3. Transonic Flow, Subsonic Domain

The paper of Helmut Sobieczky [1] is Although the Beltrami equations are linear

mainly concerned with the subsonic domain their solution is the main problem, because

of flows with free stream Mach number the system (6) has variable coefficients.

one. However, the calculation can be con- I continue with some remarks concerning

tinued across the sonic line. It is well- this situation.
known that the system (1), (2) can bekinwnrthat wthut osys (n ( nbe t Let us focus our attention to the system

linearized without loss in generality (6). In case of an incompressible flow we

using transformations similar to those would have K = I and -q, 1,%could be inter-

already used by Timman [2] and M.Sch1fer preted as components of a velocity distur-

[3]. Now let us introduce a new dependent be. a y satsf achy- ity diffe-
bance. x, y satisfy Cauchy-Riemann diffe-

variable rential equations and the system (5) is

3- mapped onto itself by a conformal transfor-

q=- W/c ) (4) mation of the coordinates. Now we recognize

that a particular solution of (5), for in-

stance
one can choose new independent variables

s, t so that the following Cauchy-Riemann q = . (9)

equations hold

_-+ 9+ W can lead to different flows, if we assign

--- + - =0; 0 -Q.(5) different solutions of the Beltrami equa-

tions (6) to (9).

x and y must satisfy the Beltrami diffe- Furthermore, the solution of the Beltrami

rential equations equations (6) and the corresponding Cauchy-
Riemann equations (with K 1 1) differ quali-

tatively only slightly. This is due to the

'---K($,- = ( ( fact that K depends on the cubic root of q

only (picture 1).

x, y are orthogonal coordinates in both
cases. The solutions of the Beltrami equa-

_~.~~J4 \cI :ions end at the sonic line q 0 K 0. But
one can always find solutions for K = Aq113

r1S 113 and K :1 which differ only slightly from

- ~ -- ~+ I~q each other. This is very helpful in finding
a desired flow pattern.

All quantities in the latter 
equation are

taken real. It then follows from equation Restricting the Beltrami equations (6) to

(4) that W4 c* and we have K(s,t)2 0 be- the subsonic domain means that the solution

cause of A4 0 and qtSO. ends at the sonic line. It does not necessa-
rily mean that the flow ends at the line

In the direct method I - W/c* and i1 are W c*, q 0 and a limit line occurs there.

sought as functions of x and y and in the The acceleration of the flow in the physi-

hodograph method x and y must be deter- cal plane has to be regular at the sonic

mined as functions of W and 2'. However, line. We can then continue the flow in the

in the system (5), (6) both q,i7'and x, y
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supersonic domain using the method of r / ,

characteristics. Such a requirement does X = -C 4 -. (4 - )

not lead to additional difficulties. (13)

In picture 2 the vicinity of the sonic '3 Cr 3 [(1UoY) _ (I-f A+/i] Y

line in the s,t-plane and the x,y-plane

are compared. In the s,t-plane the lines describes the flow through a Laval nozzle

x = const and y const are quite similar in the vicinity of the sonic line which is

to the lines s const and t = const. The shown in picture 5.

curves 0= const, which are orthogonal Another particular solution reads

to the sonic line in the s,t-plane have .1 4,$

a perpendicular tangent in the x,y-plane X - C r [ + A p +(4 c0-6 )j,
because of W = c This follows from (14)

equation (1). (W c*, d'"/dy = 0). Never- a[43 ' P/3

theless, the streamlines are smooth 
at 

= Cr (A-b)

the sonic line. Equation (14) describes the behavior of a

flow with free stream Mach number one in
4.* Particular Solutions the vicinity of a stagnation point. This

behavior is illustrated in picture 6.
All subsequent solutions are based upon the

solution (9). The Beltrami equations (6) MUller-Matschat [4] found an asymptotic

then take the form solution for the two-dimensional flow

about an airfoil at W = c*(picture 7).

O-x 1-13 _ ; =+nS 1 -_. (10) This solution is given by

X C- R. r [( + &A,- Y 2. 4A f+

We now proceed to discuss some particular

solutions of this system. (Picture 3). (3
XA( 3 4/- -t -(s1); I ( + A ,( (15)

= C2 t + C1s

represents the flow in the vicinity of - (A- )/ (4 3 + 3 )]

the sonic line in a curved duct. (Picture

4).

5 0It is worth noting that the various exam-
X = A ((t - T C s t ; ples are exact solutions. A variation of

(12) the arbitrary constant C is equivalent

2/3 1 to applying the transonic similarity rules.

- - -L4 4 A portion of the discussed solutions is

already known. In a recent paper Zierep

is the local supersonic domain correspon- [s] gives a representation of the flow

ding to the Ringleb solution. about the so-called Guderley profile in

the physical plane. Sobieczky obtains the
In the further discussion we make use of Guderley solution by superposing the nozzle

polar coordinates flow equation (14) and the asymptotic so-

" = 45 o / lution (15) (picture 8).

All results mentioned are based upon the
The solution same linear Beltrami system. Consequently,

one can superpose all solutions mentioned.
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I give you an example. The combined solu-

tion (11) + (14) + (15) represents the U 3-Xt.-) ".

sonic flow about a curved profile which 'r (X+4) ;
seems to be a new result. (18)

x y Y 1Z(K+4) (8

5. General Solutions 2 -'/3

The variety of solutions is not reduced

essentially by the solution (9). This has T denotes the thickness ratio and ?. is a

already been pointed out and is in accor- transonic similarity parameter which takes

dance with what we found in the foregoing the value A= 1 for Moo= 1. Eqs. (18)

discussions. The Beltrami equations (10) give one of various possible reductions
belonging to equation (9) can be written in the transonic regime.

as second order differential equations With the aid of eqs. (18) the aystem 1, 2

for x and y can be rewritten to give

Xss + Xtt 0 s=
3 =U + XU (19)

(16) 57 0

SS 0' " = 0• (20)
Dy ax

The homogeneous solutions of these equa-
tions ('9: integer) From equation (20) it follows that a ve-

4 1 +Vlocity potential exists!x- r I+V F(f); r *G(1)(IT)
:P u V ( v21)

are hypergeometric functions of a simple Let the subscript L refer to the solution

kind. This feature is characterized by of the linear system, I. e, the system
the fact that F(_P) and G( ) can be writ- in which the right hand side of equation

ten as a finite sum of fuzr:tions of an (20) vanishes. We can use the linear so-

angle. The usual nozzle solution (14) and lutions in order to satisfy the boundary

the MUller-Matschat solution (15) are the conditions at the body. The complete solu-
special cases V = 0 and 7 -2 of eqs. tion can be written as a set of nonlinear

(17). The solution V = -1 (i.e. the so- integral equations
lution (13), picture 5) which seems to be

a new result might also be of particular+ n t
interest. Using further solutionsV>O one L

can compile a whole table of sonic flows

about cusp-nosed airfoils. It seems that S+ rj[y L, ,q 1 ( 22)
this table widens the possibilities of Y =Y + TL ] r 2

theoretical treatment and makes the treat-

ment itself easier. -

6. Integral Equation for Cambered Profiles

at Angle of Attack

H. Ndrstrud [6] uses the integral equa- Lh r (X-r+(Y- p

tion method to treat the flow about cam-

bered profiles at angle of attack. First Z r =Z (23)

of all, let us introduce reduced quanti- ? L, 4(y-r

ties
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In the integral equation method the two- with

dimensional integrals in (22) are approxi-

mated by one-dimensional integrals. In + (XY) f(XY) (X,y)

this way one obtains one-dimensional,

non-linear integral equations. The main U+(XY) U5XY) )

problem is to solve these integral equa- UAIIJL/'AI);

tions. V + (XY) -V +(x,-Y) ;V" MY,) = V" (X,-Y).
The approximations just mentioned do not
play an essential role in the subsequent
considerations and will therefore not be Observe that V does not have the same
discussed in more details, sign as y and U becauue of equation (21).

Let us focus our attention to the solu- Equations similar to equation (25) hold

tion of the nonlinear integral equations, for the linear solutions. Let the sub-
script L refer to these linear solutions.W i t h r e g a r d t o t h e l a r g e p o s s i b i l i t i e s P + c a a l y s b r e e e n d b y a o u e

which electronic computers offer one can Lcan always be represented by a source

proceed as follows. Starting with a known distribution on the x-axis and L can be

subcritical flow with X Xt we pro- represented by a vortex distribution on
sbrtclfowihXkrit' h -xs hs in weerinn pro -+onceed step by step taking a new value for the x-axis. Thus, in determining ?L one

? in each step. It is permitted in each encounters a linear problem associated

step to linearize the equations for the with a symmetric non-lifting airfoil offinit thcnes Thealz determinatoisnfor th

disturbances of the unknown quantities. finite thickness. The determination ofL

Thus, each step results in solving a leads to a linear problem associated with

system of linear equations. This method a lifting profile of zero thickness. We

of solution is closely related to the shall see that the calculation of

method of parametric differentiation de- leads again to a problem associated with

veloped by Rubbert and Landahl [7] for a non-lifting profile of finite thickness.

a very general case. However, f" does not describe a flow about

a lifting airfoil of zero thickness in the
The integral equation method has been non-linear case. The latter remarks are
used several times in the case of a non- not relevant for our conclusions.

lifting symmetric airfoil. In this case

only the first equation (22) is needed. In case of an inclined or cambered pro-

It turns out that the method of parame- file all calculations are based on distri-

tric differentiation fails soon after in- butions on the x-axis. We therefore spe-

creasing the free stream Mach number above cialize the subsequent equations taking

its critical value, The reason for this Y = 0. Numerous terms then cancel each

failure is the occurrtance of both con- other. Carrying through the decomposition

pression and rarefaction shocks in thd soluwe obtain

tion obtained by the method of parametric "j = O :

differentiation. Such a solution is use- U+ + U (b. + +
less from the physical point of view. U L

7. Decomposition of the Solution +U ] J -

Given the veloctty potential of a flow _ (26)

about an inclined or cambered profile of V = V + =U

finite thickness. This potential can be @uz

decomposed into a symmetric and antisymme- V = VL - - | _"ir.j +IU +

tric part with tespect to Y. /LCrg

-2U(X, Y) + '(X, Y) +Y(XIY) (24) CU - ] xt+ .
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Clearly, we have U'= V'= 0 for U_ = V_= 0. reasonable. In practice one is of course
+ + +

However, U 0 for UL = VL = 0. This is mainly interested in lifting airfoils.

not necessary, if the effect due to in- Being aware of the fact that the conclu-

clination and camber are small in compari- sions concerning lifting airfoils are based

son with the effects due to thickness, upon an approximate method we must expect

This condition was assumed to be true in that the lifting and non-lifting airfoil

an earlier paper by T. Gullstrand [8] . in transonic flow are essentially diffe-

In the paper by H. Ndrstrud however, the rent problems.

disturbances due to thickness are assumed

to be of the same order of magnitude as References
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Fig. 3. Slope of the sonic line and streamline curvature

t

x

Fig. 4. Local supersonic domain
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Fig. 7. AsymPtot.c flow about an airfoil

Fig. 8. Transonic flow about an airfoil
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Fig. 9. NACA 23015 profile at zero incidence
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